nature chemistry

Article

https://doi.org/10.1038/s41557-023-01295-x

Access to unsaturated bicyclic lactones by overriding conventional $C(sp^3)$ –H site selectivity

In the format provided by the authors and unedited

9. **DFT Calculation:**

Computational Methods.

Density functional theory (DFT) calculations were performed with *Gaussian 16* rev. B.01.¹ Geometry optimizations were initially performed using the global-hybrid meta-NGA (nonseparable gradient approximation) MN15 functional² with the def2-SVP^{3,4} Karlsruhe-family basis set and the optimized structures further refined with a mix of larger basis set consisting of triple- ζ valence def2-TZVPPD (where 'D' indicates diffuse basis functions) for Pd^{5,6} atom and def2-SVP^{3,4} for all other atoms (BS1). Minima and transition structures on the potential energy surface (PES) were confirmed using harmonic frequency analysis at the same level of theory, showing respectively zero and one imaginary frequency. Where appropriate for cases where visual inspection of TS imaginary frequency is not obvious, intrinsic reaction coordinate (IRC) analyses^{7,8} were performed to confirm that the found TSs connect to the right reactants and products.

Single point (SP) corrections were performed using MN15 functional and def2-QZVP³ basis set for all atoms. The SMD implicit continuum solvation model⁹ was used to account for the effect of hexafluoroisopropanol (HFIP) solvent on the computed Gibbs energy profile. Since HIFP solvent is not available in the list of default/pre-defined solvents in the Gaussian 16 software, it is herein parametrised using a set of *seven* parameters.⁹ These include 1) the static dielectric constant of the solvent at 25°C (Eps = 16.7);^{10–12} 2) dynamic (optical) dielectric constant – the square of the refractive index value of 1.275 at 20°C was used¹³ (EpsInf = 1.625625); 3) hydrogen bond acidity (*HBondAcidity* = 0.77)¹⁴ and 4) hydrogen bond basicity $(HBondBasicity = 0.10)^{14}$, which are Abraham's A and B values respectively; 5) the surface tension of the solvent at interface (SurfaceTensionAtInterface = 23.23)¹⁵ – this value is obtained from the conversion of the surface tension of HFIP at 16.14 mN/m at 25°C¹⁶ to cal mol^{-1} Å⁻² used in the SMD model by the conversion factor of 1 dyne/cm = 1 mN/m = 1.43932 cal mol⁻¹ Å⁻² as outlined in the Truhlar's Minnesota Solvent Descriptor Database¹⁷; 6) carbon aromaticity – the fraction of aromatic carbons (*CarbonAromaticity* = 0.00) and 7) electronegative halogenicity – the fraction of halogens (*Electronegative Halogenicity* = 0.60). These parameters were specified using the keyword "SCRF = (SMD, Solvent= Generic, Read)" in Gaussian 16.

Gibbs energies were evaluated at the reaction temperature of 393.15 K (120°C), using a quasi-RRHO treatment of vibrational entropies.^{18,19} Vibrational entropies of frequencies below 100 cm⁻¹ were obtained according to a free rotor description, using a smooth damping function to interpolate between the two limiting descriptions. The free energies were further corrected using standard concentration of 1 mol/L, which were used in solvation calculations. Unless otherwise stated, the final SMD (dichloroethane)-MN15/def2-QZVP//MN15/BS1 Gibbs energies are used for discussion throughout. *All Gibbs energy values in the text and figures are quoted in kcal mol*⁻¹. All molecular structures and molecular orbitals were visualized using *PyMOL* software.²⁰

9.1. Model reaction

For computational modelling, we have chosen the following reaction (Scheme S1) for mechanistic studies.

Scheme S1. Model reaction used for computational mechanistic studies.

9.2. Actual substrate for the reaction

The acid substrate in the reaction will get deprotonated by sodium phosphate, so that the actual substrate involved in the transformation will be its corresponding sodium salt. We calculated the thermodynamics for this reaction and found that the formation of sodium salt of the acid is indeed favoured, by 19.1 kcal mol⁻¹ (Scheme S2).

Scheme S2. Thermodynamics for the deprotonation of the acid substrate.

9.3. C-H activation transition states (TSs) – methylene vs methyl activation

The Gibbs energy profiles for the C–H activation of different H atoms are shown in Figure S2. In these transition states for the concerted metalation deprotonation (CMD) using the monoprotected amino acid (MPAA), N-acetyl *tert*-leucine, as an internal base, C–H activation can occur at either methylene carbon or methyl carbon. MPAA has been shown to lower the C–H activation barrier over acetate ligands innate in $Pd(OAc)_2$ by forming favourable [5,6]palladacyclic ring²¹⁻²⁶ conducive for C–H bond cleavage.

For the C-H activation at the methylene site, two different, prochiral H-atoms can be deprotonated, giving activated Pd-C bond either *cis* or *trans* to the methyl group. The pathway INT1 \rightarrow TS1 \rightarrow INT2 *via* TS1 forms INT2 with Pd-C bond *cis* to the methyl group, whereas the pathway INT1' \rightarrow TS1' \rightarrow INT2' via TS1' forms INT2' with Pd-C bond *trans* to the methyl group. The pathway INT1'' \rightarrow TS1'' \rightarrow INT2' via TS1' forms INT2'' carries out C-H activation of the methyl C-H bond via TS1'' (Figure S2).

Figure S1. Gibbs energy profiles for the C–H activation step at different sites. Values are quoted in kcal mol⁻¹.

The DFT optimised structures for these TSs and their reactant and product states are shown in Figure S3. Conformational flexibility in how the acetate coordinates to the Pd-centre to form differently ring-puckered orientations (TSs with different conformations) have been considered. For methylene activation, **TS1** (at -3.0 kcal mol⁻¹) has a lower barrier than **TS1**'

(at 0.4 kcal mol⁻¹), by 3.4 kcal mol⁻¹. The activation of C(methyl)–H bond via **TS1**" has the lowest barrier, at -6.4 kcal mol⁻¹, which is lower than the C(methylene)–H activation, **TS1** by 3.4 kcal mol⁻¹. This suggests that the C(methyl)–H activation is kinetically favoured by about 78 times than C(methylene)–H at the reaction temperature of 120°C. However, the subsequent reductive elimination of **INT2**" occurs via **TS2**" at 19.9 kcal mol⁻¹ (*vide infra*), giving a barrier of 45.3 kcal mol⁻¹ from the activated complex **INT2**". Thus, the reductive elimination step could not occur at the reaction condition and that the C(methyl)–H activation leads to catalytic off-cycle. It is likely that **INT2**" to **INT1**" of 21.1 kcal mol⁻¹ than going forward with a barrier of 45.3 kcal mol⁻¹ to undergo reductive elimination.

Figure S2. DFT optimised transition state structures for the C–H activation of substrate at different sites. Activation barriers are taken relative to the sum of starting materials.

9.4. Reductive C–O bond coupling in C–H activated complexes

For the C(methyl)–H activation pathway INT1" \rightarrow TS1" \rightarrow INT2", no β -H is available on the quaternary carbon in the C–H activated intermediate INT2" for elimination. We considered the alternative C–O bond formation following reductive elimination in INT2" to give the spirocyclic lactone product (Scheme S3a)). For the C(methylene)–H activation pathway INT1 \rightarrow TS1 \rightarrow INT2, in addition to β -H elimination that was considered, we also considered the alternative pathway of C–O reductive coupling to give the bicyclic lactone side product (Scheme S3b)).

Scheme S3. Reductive C–O bond formation in a) C(methyl)–H activated complex and b) C(methylene)–H activated complex.

The optimized DFT TS structures with different ligands and conformations are shown in Figure S4 and the Gibbs energy profile for the reaction pathway following from C(methyl)–H activation is shown in Figure S5. We see that the reductive elimination with MPAA ligand coordinating in its imidic acid form (**TS2''-c2**, at 28.0 kcal mol⁻¹) has a much higher barrier than with MPAA coordinating via bidentate acetate moiety (**TS2''**, at 19.9 kcal mol⁻¹). We further note that the replacement of MPAA in **TS2''** by acetate ligand gives the C–O reductive coupling transition structure **TS2''-ac** at 19.4 kcal mol⁻¹, which is very similar to **TS2''**. This is likely because both MPAA and acetate ligands, in **TS2''** and **TS2''-ac** respectively, coordinate in a bidentate fashion (Figure S4), where both species have two Pd–O interactions; the Pd–O interactions are similar in both cases and are dominant over possible non-covalent interactions (NCIs) in the side chains of the MPAA ligand in **TS2''**.

From the Gibbs energy profile in Figure S5, we see that the activation barriers for the reductive C–O coupling is 44.8 kcal mol⁻¹ (from INT2" to TS2"-ac) and 45.3 kcal mol⁻¹ (from INT2" to TS2"), which are thermodynamically inaccessible at the reaction temperature of 120°C. On the other hand, the reaction from INT2" back to INT1" though TS1" has a barrier of 19.0

kcal mol⁻¹, which is much lower than the forward reaction from **INT2**" to **INT4**". Thus, the C(methyl)–H activation step is reversible.

Figure S4. DFT optimised transition state structures for the reductive elimination to form C– O bond from the C(methyl)–H activated intermediate. Activation barriers are taken relative to the sum of starting materials.

Figure S5. Gibbs energy profile for the reaction pathway following from C(methyl)–H activation.

To consider the C–O reductive coupling in the C(methylene)–H activated complex **INT2**, to give the bicyclic lactone side product (Scheme S3b)), we separately performed relaxed PES scans along the prospective C–O bond starting from optimised structure **INT2** and **INT3**. Using the highest energy structures on these PESs as initial guess, we successfully located the TSs for the C–O reductive elimination. The DFT optimised TS structures are shown in Figure S6 and the Gibbs energy profile for the reaction pathways following from C(methylene)–H

activation, comparing β -H elimination vs C–O reductive elimination, is shown in Figure S7. We note that the barriers for the C–O reductive elimination are similar to those identified C(methyl)–H activation pathway (**TS2'', TS2''-c2**, and **TS2''-ac**, Figure S4). In addition, these barriers (**TS3a** and **TS3b**) are much higher than the barrier for β -H elimination (**TS3**), by more than 35 kcal mol⁻¹, suggesting C–O reductive elimination is much energetically less favourable than β -H elimination.

Figure S6. DFT optimised transition state structures for the reductive elimination to form C– O bond from the C(methylene)–H activated intermediate **INT2** and **INT3**. Activation barriers are taken relative to the sum of starting materials.

Figure S7. Gibbs energy profile for the reaction pathways (β -H elimination vs C–O reductive elimination) following from C(methylene)–H activation.

9.5. Rotational transition state for coordinating β-H to vacant Pd-site for elimination

From the C(methylene)–H activated **INT2**, a stable intermediate resulting from both **TS1** and **TS1-c2** (Figure S3), we found that the structure undergoes a rotation along the H(1)–C–C–Pd dihedral angle (**TS2**) to position one of the adjacent methylene H atoms to coordinate to the Pd-centre via agostic interaction. The DFT optimised structure **TS2** and the resulting intermediate **INT4** are shown in Figure S8.

Figure S8. DFT optimised structures for the dihedral angle rotation in intermediate **INT2** to give **INT4** with CH–Pd agostic interaction. Activation barriers are taken relative to the sum of starting materials.

We note that, however, there is no such a rotational barrier to position the other H atom to coordinate to the Pd centre, as shown by the relaxed PES scan along the H(2)–C–C–Pd dihedral angle which shows no maximum point as the dihedral angle sweeps from negative value to positive value (Figure S9). This indicates that may not be a rotational barrier to bring the H(2) atom to coordinate to Pd-centre to give CH–Pd agostic interaction.

Figure S9. Relaxed PES scan in the gas-phase along H(2)–C–C–Pd dihedral angle. Gas-phase energies are used without further corrections.

9.6. Stereo determining migratory insertion TSs

Figure S10 shows the DFT optimised TS structures for the migratory insertion of the cyclohexene olefin C=C double bond into the Pd–O bond. This step is stereodetermining as the formation of new C–O bond resulting from the attack of O-atom from either side of the C=C

bond generates different stereochemistry at the fused carbons. The reaction pathway proceeding via transition state **TS4**, at 3.8 kcal mol⁻¹, gives the product with observed stereochemistry at the fused ring (*cis*-isomer). On the other hand, the reaction pathway proceeding via transition state **TS4'**, at 12.6 kcal mol⁻¹, would give the *trans*-isomer. The barrier difference of 8.8 kcal mol⁻¹ suggests that **TS4** will be favoured kinetically by around 78,000 times, indicating that the *cis*-isomer will be formed predominantly, consistent with experimental observation of stereochemistry of the lactone product at the fused rings.

Figure S10. DFT optimised transition state structures for the stereodetermining migratory insertion step. Activation barriers are taken relative to the sum of starting materials.

9.7. β-H elimination TSs

 β -H elimination occurs firstly after the C–H activation step to give the cyclohexene and secondly after the migratory insertion of cyclohexene C=C bond into Pd–O bond to regenerate the cyclohexene C=C bond, as the lactone ring closes. The DFT optimised TS structures for these steps are given in Figure S11.

TS3	TS5
$\Delta G^{\ddagger} = -14.6 \text{ kcal mol}^{-1}$	7.5 kcal mol ⁻¹

Figure S11. DFT optimised transition state structures for the β-H elimination step. Activation barriers are taken relative to the sum of starting materials. Conformers are denoted c2, c3 etc.
9.8. Product release

The formation of palladium-bound lactone product, **INT9**, is endergonic and uphill by 6.9 kcal mol⁻¹ and is thus thermodynamically disfavoured. We investigated the release of the lactone product from the catalyst centre (Figure S12).

The release of the lactone product from **INT9** in the absence of another species gives **INT10'**, with Pd centre having a vacant site (Figure S12a). This process is uphill by 16.7 kcal mol⁻¹ and is unfavourable. When one HFIP solvent molecule is used to displace the product from **INT9** (Figure 12b), the resulting Pd-species formed, **INT11'**, is uphill by 14.1 kcal mol⁻¹. This is still thermodynamically unfavourable. When the silver carbonate salt is used to displace the lactone

product (Figure S12c), the resulting Pd–Ag species is thermodynamically downhill ad is thus favourable.

Figure S12. Thermodynamics for the release of bicyclic lactone product from Pd-catalyst.

9.9. Regioselectivity studies for 3-substituted substrate

3-Phenyl substituted substrate, where Ph and Me groups are syn to each other (relative stereochemistry), was used as a representative to study the regioselectivity outcomes for 3-substituted substrates using DFT. Herein, only a single enantiomer was used for DFT calculations as minor images of all structures are isoenergetic (the syn relation between Me and Aryl has been established through NOESY experiment). As the reaction outcomes depend on the turnover frequency-determining intermediate (TDI) and transition state (TDTS)²⁷, we study the energetics for these two states for the competing pathways. Figure S13 shows the associated Gibbs energy profile. Different conformations where the Me and Ph groups can be either axial or equatorial, were considered for both the TDI and the TDTS (lowest energy

conformers **INT2** and **TS5** from the study of unsubstituted substrate were used as guess structures) and the DFT-optimised structures were shown in Figure S14. For the competing pathways for the formation of regioisomeric products shown in Figure S13, the overall TDI for the reaction is **INT2Ph-equatorial**, as the C–H activation step leading to the activated complex **INT2-regio-equatorial** is reversible, such that **INT2-regio-equatorial** will revert back to the starting materials and form **INT2Ph-equatorial**, which is more thermodynamically stable (competing pathways with shared states need to take the lowest/most stable state into account)²⁷. As such, the selectivity outcomes for the formation of the major vs minor product depends on the difference in the activation barriers for the TDTSs. **TS5Ph-equatorial** (at 4.3 kcal mol⁻¹) leading to the major product has a barrier that is 3.9 kcal mol⁻¹ lower than **TS5Ph-regio** (at 8.2 kcal mol⁻¹) leading to the minor product. This predicts the right major product which was experimentally observed.

Figure S13. Gibbs energy profile for the turnover-frequency determining intermediate (TDI) and transition state (TDTS) for the functionalisation of 3-substituted substrate.

Figure S14. DFT optimised turnover frequency-determining intermediate (TDI) and transition state (TDTS) structures for the 3-substituted substrate. Gibbs energy values are taken relative to the sum of starting materials. Different transition state conformers are included and are denoted by c2, c3 etc, in increasing energy.

9.10. Optimized structures and absolute energies, zero-point energies

Geometries of all optimized structures (in *.xyz* format with their associated energy in Hartrees) are included in a separate folder named *final_xyz* with an associated readme.txt file. All these data have been deposited and uploaded to zenodo.org (<u>https://zenodo.org/record/7516355</u>; DOI: 10.5281/zenodo.7516355).

Absolute values (in Hartrees) for SCF energy, zero-point vibrational energy (ZPE), enthalpy and quasi-harmonic Gibbs free energy (at 120°C/393.15 K) for optimized structures are given below. Single point corrections in SMD hexafluoroisopropanol using MN15/def2-QZVP level of theory are also included.

Structure	E/au	ZPE/a u	H/au	T.S/au	qh-G/au	SP SMD MN15/def2- QZVP
НОАс	-228.644533	0.0621 97	- 228.5741 1	0.0417 23	-228.61541	-229.06457600

			-		-	
acetate	-228.059294	0.0482 19	228.0031 2	0.0422 8	228.04417 9	-228.592055
PdOAc2_mo nomer	-583.809931	0.1043 26	- 583.6880 9	0.0683 64	- 583.75309 6	-584.634037
Na_substrate _2_salt	-663.638026	0.2304 12	- 663.3855 2	0.0760 65	- 663.45844 1	-664.677056
substrate_2	-502.040305	0.2418 76	- 501.7783 6	0.0691 48	- 501.84583 1	-502.967425
Na2HPO4	-966.579407	0.0294 98	- 966.5361 4	0.0577 07	- 966.59249 5	-967.610931
Na3PO4	- 1128.16117 6	0.0191 46	- 1128.126 6	0.0618 21	- 1128.1873 68	-1129.292047
Nacetyltertle ucine	-593.162022	0.2300 84	- 592.9075 6	0.0800 11	- 592.98437 9	-594.257468
hfip	-788.500116	0.0644 58	- 788.4202 8	0.0617 98	- 788.48022 3	-789.866397
Ag2CO3	-556.727692	0.0172 56	- 556.6994	0.0552 06	- 556.75378 8	-557.239514
Pd_leucine_2 hfip	- 2296.72285 2	0.3411 01	- 2296.325 5	0.1554 23	- 2296.4688 8	-2300.5114
lactone_prd	-499.613569	0.1960 67	- 499.4000 7	0.0627 79	- 499.46198 6	-500.529069
lactone_prd- c2	-499.620948	0.1964 17	- 499.4072 3	0.0620 24	- 499.46884 5	-500.536485
INT1'	- 1383.33564 8	0.4388 2	- 1382.849 5	0.1298 97	- 1382.9727 13	-1385.432754

TS1'	1383.32315 5	0.4353 8	1382.841 5	0.1260 11	1382.9620 16	-1385.413749
	-	0.4410	-	0.1076	-	
INT2'	1383.36438 1	0.4410 78	1382.876	0.1276 74	1382.9983 63	-1385.456831
	-				-	
INT1'-c2	1383.34274 8	0.4395 02	- 1382.856	0.1311 74	1382.9796 85	-1385.440655
	-				-	
TS1'-c2	1383.32092 1	0.4360 12	- 1382.839	0.1253 91	1382.9588 15	-1385.411889
	-		-		-	
INT2'-c2	1383.35452 6	0.4411 79	1382.866 5	0.1268 31	1382.9881 31	-1385.447502
	-		-		-	
INT1"	1383.34315 1	0.4392 78	1382.856 7	0.1305 2	1382.9798 11	-1385.441807
	-		-		-	
TS1"-c2	1383.32904 2	0.4352 38	1382.847 7	0.1274 81	1382.9684 55	-1385.420691
	-		-		-	
INT2"	1383.36598 4	0.4408 23	1382.878 3	0.1297 08	1383.0006 75	-1385.459128
	-		-		-	
TS2"	1383.27990 8	0.4384 68	1382.793 9	0.1367 25	1382.9198 5	-1385.381637
	-		-		-	
TS2"-c2	1383.26416 4	0.4384 2	1382.778 6	0.1329 98	1382.9027 05	-1385.370122
	-		-		-	
INT1"-c2	1383.34295 7	0.4398 03	1382.856 2	0.1303 16	1382.9789 13	-1385.440542
	-		-		-	
TS1"	1383.33305 3	0.4357 9	1382.851 4	0.1264 71	1382.9715 42	-1385.425058
	-		-		-	
INT2"-c2	1383.36139 6	0.4410 1	1382.873 6	0.1296 36	1382.9958 93	-1385.455347

INT1	- 1383.34332 5	0.4399 16	- 1382.856 3	0.1294 38	- 1382.9791 85	-1385.440646
	-	0 4356	_	0 1265	- 1382 9666	
TS1	1	23	1382.846	0.1205	69	-1385.41921
TS1-c2	- 1383.32272 6	0.4360 62	- 1382.840 8	0.1252 48	- 1382.9604 93	-1385.414883
INT2	- 1383.36611 5	0.4412 26	- 1382.878 2	0.1268 19	- 1382.9996 07	-1385.4595
INT2-c2	- 1383.36611 5	0.4412 28	- 1382.878 2	0.1268 15	- 1382.9996 06	-1385.459521
INT3a	- 1383.32058 9	0.4389 74	- 1382.834 1	0.1305 58	- 1382.9579 34	-1385.431006
INT3	- 1383.34446 4	0.4388 8	- 1382.856 9	0.1390 31	- 1382.9851 78	-1385.446155
T82	- 1383.33847 7	0.4379 74	- 1382.853	0.1355 94	- 1382.9785 8	-1385.439945
INT4	- 1383.34049 3	0.4379 25	- 1382.853 9	0.1387 73	- 1382.9821 76	-1385.441536
T83	- 1383.33219 5	0.4351 3	- 1382.849	0.1361 64	- 1382.9754 25	-1385.433272
INT5	- 1383.33832 8	0.4368 55	- 1382.852 9	0.1371 79	- 1382.9802 74	-1385.439261
INT5-c2	- 1383.33657 9	0.4371 38	- 1382.851	0.1362 32	- 1382.9778 23	-1385.437325
INT6	-1383.30662	0.4360 92	- 1382.821 6	0.1402 35	- 1382.9502 05	-1385.42623

т\$4	- 1383.28268 2	0.4354	- 1382.799 5	0.1364	- 1382.9256 85	-1385 40426
154	2	10	5	50	05	1505.40420
TS4-c2	1383.27881 1	0.4345 36	- 1382.796	0.1362 82	1382.9227 53	-1385.381705
TS4'	- 1383.28894 8	0.4351 96	- 1382.805 4	0.1383 42	- 1382.9328 89	-1385.389267
INT7	- 1383.24968 1	0.4363 33	- 1382.765 6	0.1343 17	- 1382.8907 37	-1385.411514
INT7-c2	- 1383.28699 7	0.4363 92	- 1382.802 7	0.1360 92	- 1382.9286 5	-1385.409455
TS5	- 1383.29048 7	0.4324 71	- 1382.810 6	0.1347 7	- 1382.9358 67	-1385.396015
TS5-c2	- 1383.29071 4	0.4323 82	- 1382.811 3	0.1295 01	- 1382.9340 9	-1385.389864
TS5-c3	- 1383.23118 2	0.4317 33	- 1382.752 2	0.1333	- 1382.8762 81	-1385.372786
TS5-c4	- 1383.24800 7	0.4317 87	- 1382.768 9	0.1314	- 1382.8926 72	-1385.348645
INT8	- 1383.33745 5	0.4373 43	- 1382.852 3	0.1338 59	- 1382.9775 75	-1385.432126
INT8-c2	- 1383.32952 5	0.4364 05	- 1382.844 7	0.1340 37	- 1382.9709 05	-1385.426338
INT8-c3	- 1383.31570 4	0.4360 02	- 1382.831 5	0.1375 18	- 1382.9588 2	-1385.422172
INT9	- 1383.29049 8	0.4328 57	- 1382.809 2	0.1375 26	- 1382.9366 34	-1385.39617

	-		-		-	
	1383.29360	0.4334	1382.812	0.1310	1382.9365	1205 202111
IN 19-c2	9	47	5	29	39	-1385.393111
		0.0505	-	0 1000	-	
	1440 40000	0.2537	1440.193	0.1233	1440.3097	1440 151070
INTIO	-1440.48886	4	6	22	22	-1442.151878
			-		-	
		0.2342	883.3376	0.0963	883.42946	
INT10'	-883.602395	6	9	14	8	-884.804197
	-		-		-	
	1439.30780	0.2390	1439.027	0.1243	1439.1439	
INT11	3	55	9	09	45	-1440.970405
	-		-		-	
	1672.15006	0.3009	1671.802	0.1350	1671.9274	
INT11'	5	31	8	5	64	-1674.704568
	-		-		-	
	1672.13861	0.3003	1671.791	0.1344	1671.9164	
INT11'-c2	1	8	6	21	67	-1674.687228
	-		-		-	
	1018.75577	0.2704	1018.453	0.1003	1018.5479	
TS2"-ac	7	25	9	56	66	-1020.185855
	-		-		-	
	1383.34994	0.4399	1382.862	0.1353	1382.9878	
INT3"	7	82	2	25	26	-1385.448716
	-		-		-	
	1383.27990	0.4384	1382.793	0.1367	1382.9198	
TS2"	8	68	9	25	5	-1385.381637
	-		-		-	
	1383.32591	0.4416	1382.836	0.1378	1382.9632	
INT4"	2	11	6	26	34	-1385.425169
	-		-		-	
	1383.27690	0.4387	1382.790	0.1374	1382.9170	
TS3a	9	12	3	02	9	-1385.379846
			-		-	
		0.4419	1382.802	0.1390	1382.9302	
INT5a	-1383.2926	24	6	08	7	-1385.433396
	_		-		-	
	1383.26246	0.4386	1382.776	0.1314	1382.9001	
TS3b	5	85	6	14	03	-1385.370109

	_		_		_	
	1383.31642	0.4410	1382.827	0.1341	1382.9530	
INT5b	9	99	8	85	82	-1385.425482

9.11. References:

Full reference Gaussian 16:

Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J.
E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
Foresman, J. B.; Ortiz, J. V; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

- Frisch, M. J. .; Trucks, G. W. .; Schlegel, H. B. .; Scuseria, G. E. .; Robb, M. A. .; Cheeseman, J. R. .; Scalmani, G. .; Barone, V. .; Petersson, G. A. .; Nakatsuji, H. .; et al. Gaussian 16, Revision B.01. 2016.
- (2) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn–Sham Global-Hybrid Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. *Chem. Sci.* 2016, 7 (8), 5032–5051.
- (3) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7 (18), 3297–3305.
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, 8 (9), 1057–1065.
- (5) Rappoport, D.; Furche, F. Property-Optimized Gaussian Basis Sets for Molecular

Response Calculations. J. Chem. Phys. 2010, 133 (13), 134105.

- (6) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta* 1990, 77 (2), 123–141.
- (7) Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 2005, 74 (23), 4161–4163.
- (8) Fukui, K. The Path of Chemical Reactions The IRC Approach. Acc. Chem. Res. 1981, 14 (12), 363–368.
- (9) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113* (18), 6378–6396.
- (10) Eberson, L.; Hartshorn, M. P.; Persson, O.; Radner, F. Making Radical Cations Live Longer. *Chem. Commun.* 1996, No. 18, 2105–2112.
- Gu, X.; Song, X.; Shao, C.; Zeng, P.; Lu, X.; Shen, X.; Yang, Q. Electrospinning of Poly(Butylene-Carbonate): Effect of Solvents on the Properties of the Nanofibers Film. *Int. J. Electrochem. Sci.* 2014, 9 (12), 8045–8056.
- (12) Carraro, M.; Gardan, M.; Sartorel, A.; Maccato, C.; Bonchio, M. Hydrogen Peroxide Activation by Fluorophilic Polyoxotungstates for Fast and Selective Oxygen Transfer Catalysis. *Dalt. Trans.* **2016**, *45* (37), 14544–14548.
- (13) Sigma-Aldrich. 1,1,1,3,3,3-Hexafluoro-2-propanol
 https://www.sigmaaldrich.com/catalog/product/aldrich/105228 (accessed Jun 6, 2017).
- (14) Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G. S.; Leo, A.; Taft, R. S. Hydrogen Bonding. Part 34. The Factors That Influence the Solubility of Gases and Vapours in Water at 298 K, and a New Method for Its Determination. *J. Chem. Soc. Perkin Trans.* 2 1994, No. 8, 1777–1791.
- (15) Richmond, E.; Yi, J.; Vuković, V. D.; Sajadi, F.; Rowley, C. N.; Moran, J. Ring-Opening Hydroarylation of Monosubstituted Cyclopropanes Enabled by Hexafluoroisopropanol. *Chem. Sci.* 2018, 9 (30), 6411–6416.
- (16) Berkessel, A.; Adrio, J. A. Dramatic Acceleration of Olefin Epoxidation in Fluorinated

Alcohols: Activation of Hydrogen Peroxide by Multiple H-Bond Networks. J. Am. Chem. Soc. 2006, 128 (41), 13412–13420.

- (17) Winget, P.; Dolney, D. M.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Minnesota solvent descriptor database https://comp.chem.umn.edu/solvation/mnsddb.pdf (accessed Mar 15, 2022).
- (18) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem.: Eur. J.* 2012, *18* (32), 9955–9964.
- (19) Funes-Ardoiz, I.; Paton, R. S. GoodVibes v1.0.1 http://doi.org/10.5281/zenodo.56091.
- (20) Schrödinger, L. The PyMOL Molecular Graphics Development Component, Version 1.8; 2015.
- (21) Chen, G.; Gong, W.; Zhuang, Z.; Andrä, M. S.; Chen, Y. Q.; Hong, X.; Yang, Y. F.; Liu, T.; Houk, K. N.; Yu, J. Q. Ligand-Accelerated Enantioselective Methylene C(Sp³)-H Bond Activation. *Science* **2016**, *353* (6303), 1023–1027.
- (22) Dutta, U.; Modak, A.; Bhaskararao, B.; Bera, M.; Bag, S.; Mondal, A.; Lupton, D. W.;
 Sunoj, R. B.; Maiti, D. Catalytic Arene Meta-C–H Functionalization Exploiting a
 Quinoline-Based Template. ACS Catal. 2017, 7 (5), 3162–3168.
- (23) Cheng, G. J.; Yang, Y. F.; Liu, P.; Chen, P.; Sun, T. Y.; Li, G.; Zhang, X.; Houk, K. N.; Yu, J. Q.; Wu, Y. D. Role of N-Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. *J. Am. Chem. Soc.* 2014, *136* (3), 894–897.
- (24) Yang, Y. F.; Hong, X.; Yu, J. Q.; Houk, K. N. Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C–H Activation of Aryl and Alkyl Groups. *Acc. Chem. Res.* 2017, 50 (11), 2853–2860.
- (25) Achar, T. K. T. K.; Zhang, X.; Mondal, R.; Shanavas, M. S. S.; Maiti, S.; Maity, S.;
 Pal, N.; Paton, R. S. R. S.; Maiti, D. Palladium-Catalyzed Directed *Meta*-Selective C–
 H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates. *Angew. Chem. Int. Ed.* 2019, *58* (30), 10353–10360.
- Porey, S.; Zhang, X.; Bhowmick, S.; Kumar Singh, V.; Guin, S.; Paton, R. S. R. S.;
 Maiti, D. Alkyne Linchpin Strategy for Drug:Pharmacophore Conjugation:
 Experimental and Computational Realization of a *Meta*-Selective Inverse Sonogashira

Coupling. J. Am. Chem. Soc. 2020, 142 (8), 3762-3774.

(27) Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. Acc. Chem. Res. 2011, 44 (2), 101–110.

10. Deuterium Exchange Experiment:

In an oven-dried screw capped reaction tube was charged with magnetic stir-bar, corresponding acid (0.1 mmol), Pd(OAc)₂ (10 mol%), *N*-Ac-'Leu (20 mol%), Ag₂CO₃ (2 equiv.), and Na₃PO₄ (2 equiv.) in 1 mL of deuterated version of 1,1,1,3,3,3-hexafluoro-2-propanol (d²-HFIP) were added. The reaction tube was capped and placed in a preheated bath at 120 °C with stirring (800 rpm) for 24 h. Upon completion the mixture was diluted with EtOAc and filtered through a celite pad. The filtrate was evaporated under reduced pressure and NMR of the crude mixture was taken. γ -Methyl group was found to be 59% deuterated and γ -methylene 45% deuterated.

Figure S15. ¹H NMR spectra of product performed in d²-HFIP.

Chemical competence of the alkenoic acid 5f.

