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Computational Details
Section S1: Computational methods for mechanism studies

Geometry optimizations in the gas phase were initially carried out using the global hybrid 

functional M06-2X5with Karlsruhe-family basis set of double-ζ valence def2-SVP6,7 for all 

atoms as implemented in Gaussian 16 rev. A.03.7 Minima on the potential energy surface (PES) 

were confirmed as such by harmonic frequency analysis, showing zero imaginary frequency, 

at the same level of theory.

To refine the energetics, single point (SP) corrections were performed in the gas phase using 

M06-2X functional and def2-TZVP5,6 basis set for all atoms. Gibbs energies were evaluated at 

the room temperature, as was used in the experiments, using a quasi-RRHO treatment of 

vibrational entropies. Vibrational entropies of frequencies below 100 cm-1 were obtained 

according to a free rotor description, using a smooth damping function to interpolate between 

the two limiting descriptions.8  M06-2X/def2-TZVP//M06-2X/def2-SVP Gibbs energies are 

given and quoted in kcal mol-1 throughout. Unless otherwise stated, these corrected values are 

used for discussion throughout the main text and in this supporting information. All molecular 

structures were visualized using PyMOL software.

Section S2: Conformational considerations 

For the dimer model system, we initially obtained the DFT-optimized structures of dimer-

LPOP-n (n = 1–5) complexes at the M06-2X/def2-SVP level of theory. Subsequently, we 

utilized these DFT-optimized structures as input to conduct thorough conformational sampling 

at GFN2-xTB9–11 level of theory using the CREST program version 2.12 by Grimme and co-

workers.12,13From the sampling, we extracted the ten lowest-energy conformers for each dimer-

LPOP-n system (optimized at the xtb level), resulting in a total of 50 conformers. These xtb-

optimized conformers were subsequently reoptimized at the DFT (M06-2X/def2-SVP) level of 

theory. Next, the most stable DFT-optimized conformer of each dimer-LPOP-n complex was 

used as input for additional conformational sampling with crest, incorporating CO₂ to identify 

the most stable dimer-LPOP-n_CO₂ structures. From this sampling, we extracted the five 

lowest-energy conformers for each dimer-LPOP-n_CO₂system (optimized at the xtb level), 

resulting in a total of 25 conformers. These xtb-optimized conformers were subsequently 

reoptimized at the DFT (M06-2X/def2-SVP) level of theory.  

For model cage system, crest conformational sampling was performed to identify the 

most stable conformers. The lowest GFN2-xTB energy structure, crest_best conformer for each 
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LPOP-n_CO2, was used, resulting in a total of 5 conformers. These xtb-optimized conformers 

were subsequently reoptimized at the DFT (M06-2X/def2-SVP) level of theory.

Section S3: Dimer model system of LPOP-n (n = 1–5) for CO2 adsorption studies 

dimer-LPOP-1_CO2 dimer-LPOP-2_CO2

ΔG = 8.7kcal mol-1 ΔG = 9.1 kcal mol-1

dimer-LPOP-3_CO2 dimer-LPOP-4_CO2

ΔG = 8.9 kcal mol-1 ΔG = 8.4 kcal mol-1

Figure S27: DFT optimized geometries of the studied dimer-LPOP-n_CO2 complexes. Key 
bond distances are given in Å. The CO2 binding free energies (ΔGBE) are given relative to the 
corresponding dimer-LPOP-n and CO2 molecules. 

dimer-LPOP-5_CO2

ΔG = 8.7kcal mol-1
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Section S4: Optimized structures and raw energies 

Geometries of all optimized structures (in .xyz format with their associated energy in Hartrees) 
are included in a separate folder named DFT_optimized_structures. All these data have been 
deposited and uploaded to https://zenodo.org/records/14870290 (DOI: 
10.5281/zenodo.14870290).

Absolute values (in Hartrees) for SCF energy, zero-point vibrational energy (ZPE), enthalpy 
and quasi-harmonic Gibbs free energy (at 273.15K) for gas-phase M06-2X/def2-SVP 
optimized structures are given below. Single point corrections in gas-phase using M06-
2X/def2-TZVP functional are also included. 

Table S2: Optimized structures and raw energies.

Structure E/au ZPE/a
u H/au T.S/au qh-G/au SP M062X/def2-

TZVP

co2 -188.369743 0.010912 -188.355262 0.028007 -188.383269 -188.596318

dimer-LPOP-1_c1 -1109.555869 0.326207 -1109.212689 0.057005 -1109.266927 -1110.784672

dimer-LPOP-1_c2 -1109.548968 0.325854 -1109.205954 0.056977 -1109.260328 -1110.778951

dimer-LPOP-1_c3 -1109.548968 0.325854 -1109.205955 0.056975 -1109.260327 -1110.77895

dimer-LPOP-1_c4 -1109.548968 0.325856 -1109.205953 0.056975 -1109.260325 -1110.77895

dimer-LPOP-1_c5 -1109.547983 0.325893 -1109.204832 0.057439 -1109.259515 -1110.777585

dimer-LPOP-1_c6 -1109.546087 0.325512 -1109.203156 0.058189 -1109.258359 -1110.77648

dimer-LPOP-1_c7 -1109.545323 0.325457 -1109.202355 0.058513 -1109.257819 -1110.776013

dimer-LPOP-1_c8 -1109.545323 0.325478 -1109.202343 0.058494 -1109.257785 -1110.776017

dimer-LPOP-1_c9 -1109.545114 0.325796 -1109.201962 0.058164 -1109.257061 -1110.77477

dimer-LPOP-2_c1 -1148.820411 0.355099 -1148.447327 0.058665 -1148.503343 -1150.093132

dimer-LPOP-2_c2 -1148.817393 0.354585 -1148.444593 0.059674 -1148.501012 -1150.090706

dimer-LPOP-2_c3 -1148.819485 0.355335 -1148.446218 0.058858 -1148.502048 -1150.091105

dimer-LPOP-2_c4 -1148.819485 0.355335 -1148.446218 0.058858 -1148.502048 -1150.091105

dimer-LPOP-2_c5 -1148.819485 0.355338 -1148.446216 0.05886 -1148.502046 -1150.091106

dimer-LPOP-2_c6 -1148.821016 0.354956 -1148.448614 0.055995 -1148.502675 -1150.089995

dimer-LPOP-2_c7 -1148.813127 0.35427 -1148.440508 0.060113 -1148.497201 -1150.085626

dimer-LPOP-2_c8 -1148.813127 0.35427 -1148.440509 0.060103 -1148.497196 -1150.085624

dimer-LPOP-2_c9 -1148.813127 0.354269 -1148.440509 0.060102 -1148.497197 -1150.085623

dimer-LPOP-2_c10 -1148.813127 0.354271 -1148.440508 0.0601 -1148.497193 -1150.085623

dimer-LPOP-3_c1 -1188.094405 0.384176 -1187.691885 0.057124 -1187.747385 -1189.404365

dimer-LPOP-3_c2 -1188.094406 0.384182 -1187.691883 0.057111 -1187.747376 -1189.404362

dimer-LPOP-3_c3 -1188.090048 0.38343 -1187.687946 0.058368 -1187.744315 -1189.401987

dimer-LPOP-3_c4 -1188.090888 0.383812 -1187.688499 0.058131 -1187.744596 -1189.401455

dimer-LPOP-3_c5 -1188.086395 0.383049 -1187.684361 0.059591 -1187.741643 -1189.398468

dimer-LPOP-3_c6 -1188.086395 0.383047 -1187.684362 0.059551 -1187.741627 -1189.398462

https://zenodo.org/records/14870290
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dimer-LPOP-3_c7 -1188.084989 0.383369 -1187.682697 0.058961 -1187.739539 -1189.398118

dimer-LPOP-3_c8 -1188.084989 0.383371 -1187.682696 0.058957 -1187.739535 -1189.398118

dimer-LPOP-3_c9 -1188.088824 0.384143 -1187.686416 0.057348 -1187.741875 -1189.39909

dimer-LPOP-3_c10 -1188.088824 0.384142 -1187.686418 0.057344 -1187.741874 -1189.399087

dimer-LPOP-4_c1 -1227.354777 0.41247 -1226.922699 0.059656 -1226.980679 -1228.710899

dimer-LPOP-4_c2 -1227.352437 0.41224 -1226.920371 0.0608 -1226.978951 -1228.708758

dimer-LPOP-4_c3 -1227.35395 0.412718 -1226.921559 0.060197 -1226.97979 -1228.708188

dimer-LPOP-4_c4 -1227.350896 0.412626 -1226.918405 0.060932 -1226.977056 -1228.707804

dimer-LPOP-4_c5 -1227.350896 0.412632 -1226.918399 0.060933 -1226.97705 -1228.707807

dimer-LPOP-4_c6 -1227.353276 0.413189 -1226.920811 0.059453 -1226.978228 -1228.70753

dimer-LPOP-4_c7 -1227.353276 0.413189 -1226.920811 0.059453 -1226.978227 -1228.707529

dimer-LPOP-4_c8 -1227.353276 0.413193 -1226.920809 0.059444 -1226.97822 -1228.707528

dimer-LPOP-4_c9 -1227.343529 0.411874 -1226.91131 0.063431 -1226.971415 -1228.702745

dimer-LPOP-4_c10 -1227.345303 0.411884 -1226.913161 0.062396 -1226.972832 -1228.701697

dimer-LPOP-5_c1 -1266.618162 0.440932 -1266.156201 0.063655 -1266.217299 -1268.019004

dimer-LPOP-5_c2 -1266.617963 0.441731 -1266.155471 0.062981 -1266.215983 -1268.018031

dimer-LPOP-5_c3 -1266.616593 0.441137 -1266.154628 0.063102 -1266.215184 -1268.017077

dimer-LPOP-5_c4 -1266.615835 0.441309 -1266.153661 0.063692 -1266.214557 -1268.015701

dimer-LPOP-5_c5 -1266.613384 0.441043 -1266.15128 0.063895 -1266.212416 -1268.014062

dimer-LPOP-5_c6 -1266.612256 0.440688 -1266.150262 0.065512 -1266.212277 -1268.012854

dimer-LPOP-5_c7 -1266.612193 0.440665 -1266.150283 0.06505 -1266.212182 -1268.012067

dimer-LPOP-5_c8 -1266.611063 0.4408 -1266.149069 0.064229 -1266.210515 -1268.012391

dimer-LPOP-5_c9 -1266.608724 0.441026 -1266.146418 0.065495 -1266.208486 -1268.011758

dimer-LPOP-5_c10 -1266.603328 0.440877 -1266.141126 0.065388 -1266.203069 -1268.005178

dimer-LPOP-1_CO2_c1 -1297.939358 0.339339 -1297.579564 0.064751 -1297.640642 -1299.390459

dimer-LPOP-1_CO2_c2 -1297.941117 0.339444 -1297.58124 0.064547 -1297.642176 -1299.390324

dimer-LPOP-1_CO2_c3 -1297.934282 0.339328 -1297.574146 0.070352 -1297.637957 -1299.386278

dimer-LPOP-1_CO2_c4 -1297.934282 0.339327 -1297.574147 0.070337 -1297.637953 -1299.386279

dimer-LPOP-1_CO2_c5 -1297.934669 0.339002 -1297.574867 0.067435 -1297.637343 -1299.386668

dimer-LPOP-2_CO2_c1 -1337.208474 0.36834 -1336.819342 0.063323 -1336.88022 -1338.699712

dimer-LPOP-2_CO2_c2 -1337.207886 0.368182 -1336.818813 0.063641 -1336.87987 -1338.699221

dimer-LPOP-2_CO2_c3 -1337.206213 0.368812 -1336.816247 0.065718 -1336.878449 -1338.697531

dimer-LPOP-2_CO2_c4 -1337.203714 0.368665 -1336.813717 0.066575 -1336.8764 -1338.69688

dimer-LPOP-2_CO2_c5 -1337.205567 0.368848 -1336.815651 0.066846 -1336.878095 -1338.69666

dimer-LPOP-3_CO2_c1 -1376.476926 0.39737 -1376.057506 0.067371 -1376.121185 -1378.008874

dimer-LPOP-3_CO2_c2 -1376.473614 0.397363 -1376.05424 0.067183 -1376.11791 -1378.006765

dimer-LPOP-3_CO2_c3 -1376.474025 0.397281 -1376.054681 0.066719 -1376.11819 -1378.006352

dimer-LPOP-3_CO2_c4 -1376.472216 0.397238 -1376.052943 0.067001 -1376.116362 -1378.005763
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dimer-LPOP-3_CO2_c5 -1376.471817 0.397383 -1376.052571 0.065344 -1376.115392 -1378.004402

dimer-LPOP-4_CO2_c1 -1415.738282 0.426359 -1415.288706 0.07144 -1415.355499 -1417.31609

dimer-LPOP-4_CO2_c2 -1415.737419 0.425617 -1415.288659 0.068309 -1415.354038 -1417.316053

dimer-LPOP-4_CO2_c3 -1415.738455 0.426197 -1415.289199 0.068899 -1415.35468 -1417.31461

dimer-LPOP-4_CO2_c4 -1415.73667 0.425912 -1415.287504 0.068994 -1415.353312 -1417.312914

dimer-LPOP-4_CO2_c5 -1415.736662 0.425952 -1415.287475 0.068965 -1415.353249 -1417.312882

dimer-LPOP-5_CO2_c1 -1455.003652 0.454713 -1454.524556 0.072656 -1454.592945 -1456.624979

dimer-LPOP-5_CO2_c2 -1455.001963 0.454259 -1454.523326 0.072139 -1454.591482 -1456.623664

dimer-LPOP-5_CO2_c3 -1454.998815 0.454329 -1454.51997 0.072726 -1454.5885 -1456.622446

dimer-LPOP-5_CO2_c4 -1454.998815 0.454337 -1454.51996 0.072701 -1454.58848 -1456.622447

dimer-LPOP-5_CO2_c5 -1454.995907 0.454349 -1454.51689 0.073291 -1454.58574 -1456.619126

LPOP-1 -2295.317342 0.669675 -2294.6153 0.088385 -2294.69845 -2297.840544

LPOP-1_CO2 -2483.704198 0.682896 -2482.98519 0.097896 -2483.07591 -2486.446909

LPOP-2 -2452.362495 0.785445 -2451.5403 0.097321 -2451.63112 -2455.056655

LPOP-2_CO2 -2640.749011 0.798605 -2639.91013 0.105076 -2640.00783 -2643.664258

LPOP-3 -2609.423275 0.899961 -2608.48263 0.103514 -2608.58002 -2612.287327

LPOP-3_CO2 -2797.808918 0.913138 -2796.85159 0.111337 -2796.95583 -2800.893938

LPOP-4 -2766.445437 1.013371 -2765.38522 0.120533 -2765.49626 -2769.494297

LPOP-4_CO2 -2954.827162 1.027195 -2953.74986 0.128962 -2953.86768 -2958.097167

LPOP-5 -2923.498388 1.128017 -2922.31944 0.131747 -2922.43909 -2926.720523

LPOP-5_CO2 -3111.887791 1.141211 -3110.69206 0.138846 -3110.81845 -3115.330806
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