

Supporting Information

Palladium-Catalyzed Directed *meta*-Selective C–H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates

Tapas Kumar Achar⁺, Xinglong Zhang⁺, Rahul Mondal, M. S. Shanavas, Siddhartha Maiti, Sabyasachi Maity, Nityananda Pal, Robert S. Paton,* and Debabrata Maiti*

anie_201904608_sm_miscellaneous_information.pdf

Supporting Information ©Wiley-VCH 2016 69451 Weinheim, Germany

Palladium-Catalyzed Directed *meta*-Selective C–H Allylation of Arenes: Unactivated Internal Olefins as Allyl Surrogates

Tapas Kumar Achar,^{[a],†} Xinglong Zhang,^{[b],†} Rahul Mondal,^[a] Shanavas M. S.,^[a] Siddhartha Maiti,^[c] Sabyasachi Maity,^[a] Nityananda Pal,^[a] Robert S. Paton, *^[b] and Debabrata Maiti*^[a]

^[a]Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
 ^[b]Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
 ^[c]BSBE, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

[†] These authors contributed equally.

- * Debabrata Maiti: dmaiti@chem.iitb.ac.in
- * Robert S. Paton: robert.paton@colostate.edu

Abstract: Palladium(II)-catalyzed *meta*-selective C–H allylation of arenes has been developed utilizing synthetically inert unactivated acyclic internal olefins as allylic surrogates. The strong σ -donating and π -accepting ability of pyrimidine-based directing group facilitates the olefin insertion by overcoming inertness of the typical unactivated internal olefins. Exclusive allyl over styrenyl product selectivity as well as *E*-stereoselectivity were achieved with broad substrate scope, wide functional group tolerance and good to excellent yields. Late-stage functionalisations of pharmaceuticals were demonstrated. Experimental and computational studies shed insights on the mechanism and pointed to key palladacyclic steric control in determining product selectivities.

2.9. Computational Methods

Density functional theory (DFT) calculations were performed with Gaussian 16 rev. A.03.¹ Geometry optimisations were carried out using recently developed global-hybrid meta-NGA (nonseparable gradient approximation) MN15 functional² with a mixed Karlsruhe-family basis set of triple-ζ valence def2-TZVPPD (where 'D' indicates diffuse basis functions) for Pd³ atom and def2-SVP^{4,5} for all other atoms (BS1). This functional was chosen as it performs much better than many other functionals in predicting transition metal reaction barrier heights.² Previously, Pd(II)catalysed C-C bond formations have been studied using other functionals including meta-GGA TPSS and range-separated ω B97X-D functionals.^{6,7} MN15 has been shown to give better agreement in geometry predictions of both transition metal complex and organic molecules than many other functionals including ω B97X-D and TPSS.² Minima and transition structures on the potential energy surface (PES) were confirmed as such by harmonic frequency analysis, showing respectively zero and one imaginary frequency, at the same level of theory. Single point (SP) corrections were performed separately with either MN15 or ω B97X-D⁸ functional and def2-OZVPP⁴ basis set for all atoms. The SMD continuum solvation model⁹ was carried out to include the effect of acetonitrile solvent on the computed Gibbs energy profile. Gibbs energies were evaluated at 363.15 K, using a quasi-RRHO treatment of vibrational entropies.^{10,11} Vibrational entropies of frequencies below 100 cm⁻¹ were obtained according to a free rotor description, using a smooth damping function to interpolate between the two limiting descriptions. The free energies were further corrected using standard concentration of 1 mol/L, which were used in solvation calculations. SMD(acetonitrile)-\u03c6B97X-D/def2-QZVPP//MN15/BS1 Gibbs energies were given with SMD(acetonitrile)-MN15/def2-OZVPP//MN15/BS1 Gibbs energies given in brackets throughout. All values are quoted in kcal mol⁻¹.

The *.wfn* files for NCIPLOT were generated at MN15/DGDZVP^{14,15} level of theory. Noncovalent interaction (NCI) indices calculated with NCIPLOT were visualised at gradient isosurface value of s = 0.5 au. These are coloured according to the sign of (λ_2) over the range of -0.1 (blue = attractive) to +0.1 (red = repulsive). All molecular structures and molecular orbitals were visualized using *PyMOL* software.¹⁶ Dihedral scans were done in gas phase using MN15/def2-SVP and the energies were taken without further corrections.

Geometries of all optimized structures (in *.xyz* format with their associated energy in Hartrees) are included in a separate folder named *structures_xyz* with an associated README file. All these data have been deposited with this Supporting Information and uploaded to zenodo.org (DOI: 10.5281/zenodo.2775841).

All Python scripts used for data analysis have been made available - https://github.com/bobbypaton - under a creative commons CC-BY license.

2.9.1 Conformational considerations for starting materials

The starting materials for computational modelling, sulfonyl arene, **1a**, and *trans*-hex-3-ene, were first conformationally sampled. The possible rotamers for sulfonyl arene, **1a**, were generated by systematically varying a combination of key dihedral angles shown in red (Scheme S1) and optimising the structures. The crystal structure of *trans*-hex-3-ene was obtained as a starting point for structure optimisation; additional rotamers were generated by varying the given dihedral angle in red (Scheme S1) and doing structural optimisations. The lowest energy conformers for each starting material were used for subsequent calculations.

Scheme S1. Rotamers were generated by varying the dihedral angles in red in conformational sampling of the most stable conformer used for reaction modelling.

2.9.2 C-H activation in the presence of ligand

The amino acid ligand, *N*-Ac-norleucine, lowered the C–H activation barrier by forming a 5membered palladacyle as shown in the main text (**ts-1**' at 20.0^{\ddagger} (20.8^{\ddagger}) kcal mol⁻¹). Other possible arrangements of this ligand were found to have higher activation barriers than **ts-1**' (Figure S13).

Figure S13. Possible arrangements of ligand for C–H activation step. Gibbs energies are given in kcal mol⁻¹.

2.9.3 Exact identity of the ligand in 1,2-migratory insertion TDTS

The intermediate after MPAA ligand-assisted C–H activation (**int-2**') has the resulting ligand in imidic acid form. The subsequent 1,2-migratory insertion TS leading from here (**ts-3**'a at 41.7 kcal mol⁻¹, Figure S14) has a much higher barrier than its tautomeric form (**ts-3'b** at 27.1 kcal mol⁻¹, Figure S14). The coordination by acetate (**ts-3** at 23.2 kcal mol⁻¹, Figure S14) has the lowest barrier amongst these three possibilities. We anticipated that **ts-3** and **ts-3'b** would be rather close in energy, since they both coordinate to Pd-centre in a monodentate fashion (Figure S14), where the Pd–N interactions would dominate over other possible non-covalent interactions (NCIs) in the side chains. Although the amino acid side chain could provide better NCIs than the methyl group in acetate, it could also give rise to potentially more steric hinderance.

Figure S14. TDTSs with either acetate (a) or amino acid in tautomeric forms (b and c) as the monodentate ligand. These can be thought of having the structure in (d) where the R-groups vary. Gibbs energies are given in kcal mol⁻¹.

In the computational study of similar systems where amino acid ligands were used for the C–H activation step, the amino acid (a.a.) was retained as a monodentate ligand for all subsequent steps.^{17,18} We envisioned that the acetate ligand and the a.a. ligand would have similar effects in 1,2-migratory insertion step and replacing the a.a. ligand with acetate would not affect the energy profile too much (Note that the main role of the a.a. ligand is in the C–H activation step). Conformational searches were thus performed for the 1,2-migratory insertion step above with either acetate or amino acid as the monodentate coordinating ligand. A total of 6 TSs were found for acetate ligand and 11 TSs for the a.a. ligand (these structures are given in folder *3_ligand_identity_in_TDTS* accompanying this ESI). All these are higher than C–H activation barrier, as expected since this step was overall rate-determining and C–H activation is reversible as measured by kinetic isotopic effect experimentally. Although the lowest TS with acetate ligand (within 2 kcal mol⁻¹). For modelling purposes, it is sufficient to use acetate instead of the full a.a. ligand since the conclusion of the mechanism will remain the same.

2.9.4 Relative stabilities of int-5 and int-7 and β -hydride elimination TSs

We found, via intrinsic reaction coordinates (IRC) analyses, that **int-5** eventually lead to the product formation via direct β -hydride elimination (**ts-5**, Figure 5 main text) forming a metalbonded Pd(II) hydride, whereas **int-7** underwent acetate-assisted β -hydride elimination (**ts-7**) with much lower activation barrier. **Int-7** was much more stable than **int-5** since in the latter, the acetate group was near the 14-membered palladacycle ring, giving rise to unfavourable interactions with the arene, as shown in the NCI plot (circled in green) in Figure S15. Alternative TSs for β -hydride elimination following each of these intermediates were given in Figure S16. Note that **ts-7**', having the Pd-coordinating acetate-O atom forming 3-membered ring in the TS is much less favoured than **ts-7**, which has the non-coordinating acetate-O atom forming 5-membered ring.

Figure S15. Relative stabilities of int-5 and int-7 and their NCI plots to indicate the sterics present.

Figure S16. Alternative TSs for β -hydride elimination step to form the final product.

2.9.5 Product selectivity studies for trans-hexene substrate

The formations of both *E*- and *Z*-allylated products proceed via ligand-assisted β -hydride elimination whereas styrenylation proceeds via direct β -hydride elimination due to unfavourable arrangement of the acetate ligand. Styrenylation involves unfavourable palladacycle ring strain such that its direct β -hydride elimination proceeds via the displacement of the directing group pyrimidinyl-N atom by the acetate ligand that subsequently binds via bidentate mode (**ts-5b**, 19.2 kcal mol⁻¹) rather than via the intact palladacycle with the acetate ligand bound in a monodentate fashion (**ts-5b-c2**) (Figure S17). As a result, to form the styrenyl product the rotational barrier became the overall regio-determining step and this required a very high barrier as the palladacycle experienced huge strain when H_s was brought to interact agostically with Pd(II) centre (Figure S18(ii)).

Reaction	dir	direct β -H elimination				ligand-promoted β-H elimination			
product	ts-4x	int-5x	ts-5x	int-6x	ts-6x	int-7x	ts-7x	int-8x	barrier ^a
<i>E</i> -allyl	15.0‡	12.4	15.6‡	8.5	4.3‡	3.8	9.2 [‡]	-0.4	7.8
(x=nil)	(14.9 [‡])	(12.7)	(15.3 [‡])	(8.4)	(4.7 [‡])	(6.0)	(10.7‡)	(-0.3)	(8.8)
Z-ally	16.8 [‡]	14.7	17.6‡	9.6	5.9‡	7.0	11.3‡	0.7	9.9
(x=a)	(16.5 [‡])	(15.1)	(17.6 [‡])	(10.0)	(6.4 [‡])	(8.9)	(12.7‡)	0.6	(10.8)
styrenyl	21.0 ^{‡, b}	17.9	19.2 ^{‡, c}	20.4	21.0 ^{‡, b}	3.9	48.5 [‡]	10.5	19.6
(x=b)	(21.8 [‡])	(18.7)	(19.2 [‡])	(18.3)	(21.8‡)	(4.7)	(48.3 [‡])	(8.3)	(19.9)

^{*a*} We take the lowest value of the two. Both *E*- and *Z*-allylation preferred acetate-promoted β -hydride elimination, whereas styrenylation preferred direct β -hydride elimination via Pd(II) hydride complex.

^{*b*} Rotational TS for styrenylation are the same regardless of whether β -hydride elimination occurs directly or via ligand involvement. The prerequisite is to bring the H_s atom to interact agostically with Pd(II)-centre.

^c The TS where the directing group got displaced (**ts-5b**) has a lower activation barrier than the one where it remains coordinated (**ts-5b-c2**) since the former released the unfavourable strain in the palladacycle.

Table S10. Gibbs energies for selectivity studies for trans-hexene. TDTS values are given in bold.

Figure S17. Product selectivity studies. The β -hydride elimination TSs for each product formation is given, with their HOMOs (isosurface value of 0.05) and NCI plots.

The dihedral angle scans allow us to compare the rotational barriers required to form allyl- vs styrenyl-product since the rotational barrier for the latter is regio-determining. We can see that styrenylation has a hugely disfavoured ring strain when the required H atom (H_s in Figure S18(ii)) is brought to interact agostically with Pd(II) centre – a prerequisite for the subsequent β -hydride elimination. Note that as discussed in the main text, the allylation involved steps that did not impose any strain on the 14-m palladacycle whereas the styrenylation severely distorted the palladacycle giving rise to hugely unfavourable ring strains.

Figure S18. Dihedral angle scan (about C–C bond in red) for rotational barrier for the formation of (i) *E*-/*Z*-allylated products and (ii) styrenyl product for *trans*-hexene substrate. Note the different energy scales used. In (ii), note the position of styrenyl proton (H_s , labelled *S* in green), which is restrained in a position away from Pd(II)-centre by the conformationally rigid ring (outlined in purple).

2.9.6 Arene site-selectivity (HOMO, NCI plots and isodesmic studies)

The *ortho-/para*-positions on the arene for potential activation were compared to *meta*-activation. The C–H activation and 1,2-migratory insertion steps were studied. The comparative energies for the key steps were given in Table S11. For the turnover frequency determining step, *para*-insertion (**ts-3p**) was 3.9 kcal mol⁻¹ higher in activation barrier than *meta*-insertion (**ts-3**), translating to 1 in 222 selectivity; *ortho*-insertion (**ts-3o**) was 12.7 kcal mol⁻¹ higher than ts-3, making *ortho*-insertion uncompetitive (1 in 40 million). These agreed well with observed selectivities which can be traced to unfavorable sterics involved in *ortho-* and *para*-addition (Figure S19).

SMD-MeCN-wB97XD(MN15)/def2QZVPP //MN15/GENECP (def2TZVPPD on Pd + def2SVP on others)

Allylation site	ts-1x	ts-1x'	ts-3x	int-4x
meta-	26.7 [‡]	20.0*	23.2‡	1.4
(x=nil)	(28.2 [‡])	(20.8 [‡])	(23.8 [‡])	(1.9)
ortho-	35.8‡	28.7‡	37.0 [‡]	19.2
(x=0)	(34.9 [‡])	(29.2 [‡])	(35.5‡)	(18.2)
para-	28.6 [‡]	20.5 [‡]	28.2‡	8.4
(x=p)	(28.6 [‡])	(20.0 [‡])	(26.7 [‡])	(8.2)

Table S11| Arene site-selectivity studies. MPAA ligands lowered C–H activation in all cases such that 1,2- migratory insertion (ts-3x) becomes the TDTS whose barriers are given in bold.

In addition to the stereoelectronic effects associated with arene site selectivity, the ring strain energies in these TSs were calculated from the reaction enthalpy of the isodesmic reaction^{19,20} shown in Scheme S2. Specifically, a hypothetical pyridine ligand was used for TS searches to release the ring strain where the directing group (DG) got uncoordinated. The starting conformation for the DG (highlighted in green, Scheme S2) in all 3 cases was made the same in a linear form for subsequent TS searches. The enthalpies of the reactions were further corrected with SMD solvation model: $\Delta H_{sol}^{\ddagger} = \Delta H_{gas}^{\ddagger} - \Delta E_{gas}^{\ddagger} + \Delta E_{sol}^{\ddagger}$. The calculations showed that the *meta*-insertion TDTS had the lowest ring strain at 0.3 kcal mol⁻¹, followed by *para*-insertion TDTS, with 4.7 kcal mol⁻¹; *ortho*-insertion TDTS had the largest ring strain at 12.1 kcal mol⁻¹. These values are in excellent quantitative agreement with the selectivity studies (Table S11, where *para*-TDTS is about 4 kcal mol⁻¹ and *ortho*-TDTS is about 12 kcal mol⁻¹ higher than *meta*-TDTS).

Scheme S2. Computed ring strain energies by study of isodesmic reaction where a hypothetical pyridine ligand is involved. Enthalpies quoted are corrected with solvent effect and in kcal mol⁻¹.

The HOMOs for insertion TDTSs for *meta-/ortho-/para*-activation were plotted in Figure S19 Top. These show similar electron distributions, suggesting that electronic factors are less important in the selectivity of arene site activation. NCI plots (Figure S19 Bottom) show that **ts-3p** was sterically disfavoured when the methyl-group on the ring came close to the alkene being added whereas in **ts-3o**, the excessive ring strain made this TS highly strained (the directing group got twisted out of shape), giving rise to unfavourably high activation barrier. The possibility of addition to the other *ortho*-site would bring the methyl-group into close proximity of the alkene being added, further increasing the activation strain and was thus not considered.

Figure S19. Insertion TSs from *para-*, *meta-* and *ortho-*activated complexes. Top: HOMOs at an isovalue of 0.04. Bottom: NCI plots.

2.9.7 General conformational sampling of TDTSs (1,2-migratory insertion step)

Once a TS was found, the structure was used as starting guesses for searching TS conformers. The palladacycle ring was frozen and rotamers along C–C bonds in red (Scheme S3) were generated for TS conformational searches. Altogether, 9 TSs were found for each orientation of alkene (18 TSs for each of *trans*-hexene and *cis*-hexene) and 4 TSs were found for each orientation of cyclohexene (8 TSs altogether). The optimized TS structures and their relative energy barriers with respect to the lowest barrier TS for *trans*-hexene substrate ($\Delta\Delta G^{\neq}$) were shown in Figure S20.

Scheme S4. Rotamers were generated by varying the dihedral angles in red in conformational sampling of the 1,2-migratory insertion TDTSs for *trans*- and *cis*-hexene substrates; for cyclohexene substrate, the buckling of the half-chair in different orientations were considered.

Boltzmann weighting and selectivity

All TDTS conformers were used for Boltzmann weighting to give selectivity ratio. Standard procedures for Boltzmann weighting were applied (see, for example, Equation (2) of ref. ²¹ and SI of ref. ²²); specifically, the selectivity between two products A and B were calculated *via*

$$\frac{[A]}{[B]} = \frac{\sum_{i \in all \ confs,A}^{N} e^{-\Delta \Delta G_{0i,A}^{\neq}/RT}}{\sum_{j \in all \ confs,B}^{N} e^{-\Delta \Delta G_{0j,B}^{\neq}/RT}}$$
(1)

where $\Delta\Delta G_{0i,X}^{\neq} = \Delta G_{i,X}^{\neq} - \Delta G_{0,X}^{\neq}$ is the energy difference between the *i*th conformer of product X (X = A, B) and the lowest energy conformer of all products, state 0.

(a) Conformers for 1,2-migratory insertion TDTS for diastereomer 1 (d1) formation from *trans*-hexene.

trans-d2-c1	trans-d2-c2	trans-d2-c3		
2.06 1.99 1.44				
$\Delta\Delta G^{\neq} = 2.0 \ (1.3)$	$\Delta\Delta G^{\neq} = 2.2 \ (2.4)$	$\Delta\Delta G^{\neq} = 2.4 \ (2.1)$		
trans-d2-c4	trans-d2-c5	trans-d2-c6		
2.03	2.05 2.01 1.44	2.03		
$\Delta\Delta G^{\neq} = 2.6 \ (2.1)$	$\Delta\Delta G^{\neq} = 2.6 \ (1.9)$	$\Delta\Delta G^{\neq} = 4.5 \ (4.0)$		
trans-d2-c7	trans-d2-c8	trans-d2-c9		

(b) Conformers for 1,2-migratory insertion TDTS for diastereomer 2 (d2) formation from *trans*-hexene.

(c) Conformers for 1,2-migratory insertion TDTS for diastereomer 1 (d1) formation from *cis*-hexene.

(d) Conformers for 1,2-migratory insertion TDTS for diastereomer 2 (d2) formation from *cis*-hexene.

(e) Conformers for 1,2-migratory insertion TDTS for diastereomer 1 (d1) formation from cyclohexene (cy).

	1.44	1.44 1.44
$\Delta\Delta G^{\neq} = 3.7 \ (4.0)$	$\Delta\Delta G^{\neq} = 4.3 \ (3.3)$	$\Delta\Delta G^{\neq} = 4.4 \ (4.6)$
cy-d2-c1	cy-d2-c2	cy-d2-c3

(f) Conformers for 1,2-migratory insertion TDTS for diastereomer 2 (d2) formation from cyclohexene (cy).

Figure S20. Optimized TS geometries for 1,2-migratory insertion TDTS step for *trans*-hexne (a and b), *cis*-hexene (c and d) and cyclohexene (e and f). All TSs were taken relative to the same minima (*trans*-d2-c1). Relative $\Delta\Delta G^{\neq}$ values are in kcal mol⁻¹. Bond lengths are given in Angstroms.

Figure S21. HOMO (isosurface value of 0.04) and NCI plots for the 1,2-migrator insertion TDTS lowest barrier conformer for (i) *trans*-hexene and (ii) *cis*-hexene. The comparisons show that stereoelectronics are rather similar, suggesting similar reactivities.

2.9.8 Product selectivity studies for *cis*-hexene substrate

Following from results using *trans*-hexene (section 2.9.5), the lowest pathways for *cis*-hexene product selectivity were studied and the key TS structures shown. Here again, for styrenylation, the TS where the DG got displaced (*cis*-ts-5b at 16.1^{\ddagger} (15.3^{\ddagger}) kcal mol⁻¹) has a lower activation barrier than the one where it remained coordinated (*cis*-ts-5b-c2 at 23.1^{\ddagger} (22.5^{\ddagger}) kcal mol⁻¹) since the former released the unfavourable strain in the palladacycle (Figure S22).

Reaction	direct β -H elimination				ligand-promoted β-H elimination				Overall
product	cis-ts-	cis-	cis-ts-	cis-	cis-ts-	cis-	cis-ts-	cis-	barriar
	4x	int-5x	5x	int-6x	6x	int-7x	7x	int-8x	Dairici
<i>E</i> -allyl					4.9‡	10.8	13.8 [‡]	3.5	11.2
(x=nil)	_	_	_	_	(5.1 [‡])	(10.5)	(14.9 [‡])	(3.0)	(12.1)
Z-ally					10.7‡	11.7	1 7.4 ‡	7.1	14.8
(x=a)	_	_	_	_	(11.4 [‡])	(13.3)	(18.6 [‡])	(6.4)	(15.8)
styrenyl	20.8 ‡	11.7	16.1‡	17.1					18.2
(x=b)	(22.2‡)	(12.3)	(15.3 [‡])	(14.8)	_	_	-	_	(19.4)

Table S11. Gibbs energies for selectivity studies for *cis*-hexene. TDTS values are given in bold.

Figure S22. Optimised TS structures for selectivity studies using *cis*-hexene substrate.

HOMOs for ligand-assisted β -H elimination for both allylation using *cis*-hexene substrate (Figure S23) are similar to each other and similar to those for *trans*-hexene (Figure S17), where a σ^*_{CC} bond is broken and a π_{CC} bond is formed as the deprotonation occurred. The differences in the *E*-/*Z*-allylation stereoselectivity could arise due to the slightly less favourable NCIs in *Z*-allylation (Figure S23).

Figure S23. HOMOs (isosurface value 0.05) and NCI plots for *E*- vs *Z*-allylated product selectivity for *cis*-hexene substrate.

Although for allylation, the ligand-assisted β -H elimination is the r.d.s. for product selectivity, the rotational barrier to bring the H_s atom to interact agostically with Pd(II) centre before direct β -H elimination is the r.d.s. for styrenylation. A comparison between such rotations by the dihedral angle scans along key C–C bonds can be instructive (Figure S24).

Figure S24. Dihedral angle scan (about C–C bond in red) for rotational barrier for the formation of (i) *E*-/*Z*-allylated products and (ii) styrenyl product for *cis*-hexene substrate. Note the different energy scales used. In (ii), the position of styrenyl proton (H_s , labelled *S* in green) is restrained away from Pd(II)-centre by the conformationally rigid ring (outlined in purple).

2.9.9 Product selectivity studies for cyclohexene substrate

Initial dihedral angle scans were performed about the key C–C bonds to locate rotational barriers bringing the H atom (for subsequent β -H elimination) to interact agostically with Pd(II)-centre (Figure S25). Only rotational barriers for Z-allylation could be located; both *E*-allylation and styrenylation had rotational barriers that were about 30 kcal mol⁻¹ higher than for Z-allylation; these arise due to unfavourable ring distortions imposed by the rigid cyclohexyl ring fused to the rigid palladacycle in the insertion intermediate. The overall Gibbs energy profile for cyclohexene substrate were shown in Figure S26. Given that the subsequent ligand-assisted β -H elimination for Z-allylation (**cy-ts-7a**) was 6.3 kcal mol⁻¹ higher than the rotational barrier (**cy-ts-6a**), we estimate that the barriers for both *E*-allylation and styrenylation are at least ~ 20 kcal mol⁻¹ higher than *Z*-allylation (**cy-ts-7a**), thus being disfavoured by 1 in a trillion. Therefore, if at all, only *Z*-allylated product can be formed using cyclohexene substrate.

Figure S25. Dihedral angle scan (about C–C bond in red) for rotational barrier for the formation of (i) E-/Z-allylated products and (ii) styrenyl product for cyclohexene substrate.

Figure S26. Gibbs free energy profile for *Z*-allylation using cyclohexene substrate. **cy-ts-3** is the same as **cy-d1-c1** as in Figure S20(e).

2.9.10 Absolute energies, zero-point energies

Absolute values (in Hartrees) for SCF energy, zero-point vibrational energy (ZPE), enthalpy and quasi-harmonic Gibbs free energy (at 363K) for optimised structures are given below. For harmonic frequency analysis, a plus (+) sign indicates that the lowest frequency of the optimised energy minimal structures is positive, and single negative frequency for each transition state is included. Single point corrections in SMD acetonitrile using ω B97X-D and MN15 functionals are also included. Each sub-heading corresponds to a subfolder inside the *structures_xyz* folder where all optimised structural coordinates are given in *.xyz* format, along with the corresponding (gas-phase) energy, *E*.

Struc	F/ou	ZPE/a	U/au	ah C/au	Im.Freq/	SP \omegaB97X-D	SP MN15
ture	L/au	u	n/au	qii-G/au	cm ⁻¹	(MeCN)	(MeCN)
0.04	• • •	•					
0. Start	ing materia	uls:					
arene 1a	- 1426.522 9	0.3115 09	- 1426.180 7	- 1426.269	+	- 1429.0622721 6	- 1428.691971 5
<i>trans-</i> hexen e	- 235.3139 9	0.1651 1	- 235.1364 5	- 235.1857 7	+	-235.88622142	-235.7628220
<i>cis-</i> hexen e	- 235.3122 6	0.1654 29	- 235.1344 6	- 235.1835 2	+	-235.88455969	-235.7610397
cyclo- hexen e	- 234.1283 2	0.1463 25	- 233.9727 3	- 234.0146 6	+	-234.68105898	-234.5687484

WILEY-VCH

HOA c	- 228.6445 3	0.0621 97	- 228.5750 2	- 228.6124 2	+	-229.13726389	-229.0706003
N- acetyl - norle ucine	- 593.1581 9	0.2314 35	- 592.9054 8	- 592.9754 6	+	-594.47065223	-594.2582931
Pd(O Ac)2	- 583.8099 3	0.1043 26	- 583.6901 2	- 583.7484 8	+	-585.03620367	-584.6482919
Pd3(O Ac)6	- 1751.587 3	0.3178 68	- 1751.221 8	- 1751.347 2	+	- 1755.2153780 1	- 1754.047381 6
1. meta	-allylation:						
int-1	- 2010.361	0.4173 36	- 2009.896 6	- 2010.018 7	+	- 2014.1207433 0	- 2013.362453 1
ts-1	- 2010.336 1	0.4119 75	- 2009.877 4	- 2009.998 9	- 1136.100	- 2014.0948740 8	- 2013.332751 5
int-2	- 2010.351 5	0.4172 56	- 2009.886 8	- 2010.010 3	+	- 2014.1104499 7	- 2013.350665 7

WILEY-VCH

int-1'	- 2146.206 8	0.5229 38	- 2145.631 5	- 2145.763	+	- 2150.3058485 4	-2149.465115
ts-1'	- 2146.190 9	0.5178 66	- 2145.621 2	- 2145.751 8	- 1275.114 7	- 2150.2850861 0	-2149.445114
int-2'	- 2146.215 2	0.5236 42	- 2145.639 2	- 2145.771	+	- 2150.3093651 5	-2149.472983
int-3	- 2017.031 4	0.5210 84	- 2016.458	- 2016.590 4	+	- 2020.8726358 8	- 2020.056335 5
ts-3	- 2017.015 3	0.5202 4	- 2016.443 9	- 2016.574 2	- 281.0309	- 2020.8571594 6	-2020.04
int-4	- 2017.054 6	0.5225 03	- 2016.481	- 2016.610 2	+	- 2020.8951539 7	-2020.078034
ts-4	- 2017.039 5	0.5205 7	- 2016.468 5	- 2016.595 9	-95.8045	- 2020.8725658 1	-2020.056365
int-5	- 2017.042 4	0.5207 22	- 2016.470 5	- 2016.599 5	+	- 2020.8761334 5	-2020.059231

WILEY-VCH

ts-5	- 2017.037 6	0.5184 43	- 2016.468 4	- 2016.596 3	- 534.1546	- 2020.8694761 2	-2020.053557		
int-6	- 2017.048 7	0.5198 9	- 2016.477 5	- 2016.606 8	+	- 2020.8814551 4	-2020.065211		
int-7	- 2017.047 9	0.5209 31	- 2016.475 9	- 2016.605 3	+	- 2020.8896222 6	-2020.069785		
ts-7	- 2017.043	0.5169 19	- 2016.475 4	- 2016.603 8	- 960.7952	- 2020.8775839 4	-2020.058839		
int-8	- 2017.065 1	0.5214 65	- 2016.492	- 2016.622 8	+	- 2020.8959791 2	-2020.079392		
ts-7'	- 2017.016 5	0.5163 98	- 2016.448 5	- 2016.579	- 975.0604	- 2020.8468038 1	-2020.030891		
2. Regioselectivity (Z-allylation vs styrenylation):									
ts-4a	- 2017.037 2	0.5211 16	- 2016.465 9	- 2016.592 7	-77.2317	- 2020.8707224 4	-2020.05477		
int-5a	- 2017.039 1	0.5211 07	- 2016.466 9	- 2016.595 6	+	- 2020.8730736 1	-2020.056043		

WILEY-VCH

ts-5a	- 2017.033 9	0.5184 58	2016.464 8	- 2016.592 6	- 516.2140	- 2020.8663071 8	-2020.049971
int-6a	- 2017.045 6	0.5199 94	- 2016.474 3	- 2016.603 6	+	- 2020.8797064 2	-2020.062662
ts-7a	- 2017.040 3	0.5172 41	- 2016.472 5	- 2016.600 6	- 912.4642	- 2020.8747277 9	-2020.056175
ts-4b	- 2017.019 5	0.5206 51	- 2016.448 3	- 2016.576 3	-49.4039	- 2020.8627730 3	-2020.045129
int-5b	- 2017.023	0.5203 8	- 2016.451 3	- 2016.581 2	+	- 2020.8663448 6	-2020.04869
ts-5b	- 2017.023 3	0.5175 49	- 2016.454 2	- 2016.585 2	- 244.3729	- 2020.8604659 9	-2020.044136
int-6b	- 2017.027 2	0.5189 73	- 2016.456 4	- 2016.587 4	+	- 2020.8603052 0	-2020.047355
ts-7b	- 2016.985 3	0.5138 83	- 2016.419 9	- 2016.549 9	- 1493.046 9	- 2020.8110423 8	-2019.995037

3. Ligand identity in TDTS:

WILEY-VCH

	-		-	-	-		
ts-3-	2017.015	0.5202	2016.443	2016.574	281.0309	-2020.85716	
Ac-c1	35	4	89	18	0		-2020.03997
	-	0.5000	-	-	-		
ts-3-	2017.012	0.5200	2016.441	2016.5/1	286.4834	-2020.85668	
Ac-c2	91	6	55	93	0		-2020.03961
	-		-	-	-		
ts-3-	2017 010	0 5201	2016 439	2016 570	284 0324	-2020 85518	
	08	7	11	63	0	2020.00010	-2020 03759
At-t5	70	,		05	U		-2020.03737
	-		-	-	-		
ts-3-	2017.012	0.5201	2016.441	2016.571	305.7022	-2020.85540	
Ac-c4	57	3	08	53	0		-2020.03868
	-		-	-	-		
ts-3-	2017.002	0.5201	2016.430	2016.560	296.0877	-2020.85451	
Ac-c5	08	5	87	47	0		-2020.03664
	_		_	_	_		
ts_3_	2017 002	0 5201	2016/131	2016 560	205 2832	-2020 85081	
13-3-	2017.002	1	14	2010.300 54	0	-2020.05001	2020 02204
Ac-co	54	1	10	50	0		-2020.05594
4-22 1	-	0.6904	-	-		-	
	2381.537	0.0894	2380.782	2380.942	-	2386.1978885	-2385.2342
-aa-cl	3	22	5	1	284.2484	2	
ts3'b	-	0.6895	-	-	-	-	
- -aa-c2	2381.537	07	2380.783	2380.940	283.7738	2386.1972974	-2385.2348
	8		2	7		2	

WILEY-VCH

ts3'_b -aa-c3	- 2381.532 2	0.6891 98	- 2380.777 5	-2380.9	- 283.7067	- 2386.1955226 0	-2385.2316
ts3'_b -aa-c4	- 2381.535 5	0.6895 09	- 2380.780 7	-2380.94	- 281.9868	- 2386.1959698 2	-2385.2323
ts3'_b -aa-c5	- 2381.532 1	0.6892 92	- 2380.777 4	- 2380.936 9	- 304.8330	- 2386.1946542 6	-2385.2314
ts3'_b -aa-c6	- 2381.535 7	0.6893 62	- 2380.781 2	-2380.9	- 269.5971	- 2386.1950421 6	-2385.2323
ts3'_b -aa-c7	- 2381.531 3	0.6894 85	- 2380.776 5	-2380.9	- 281.9394	- 2386.1943224 0	-2385.23
ts3'_b -aa-c8	- 2381.535 2	0.6896 71	- 2380.780 3	- 2380.938 6	- 303.3393	- 2386.1923800 4	-2385.2307
ts3'_b -aa-c9	- 2381.531 5	0.6898 67	- 2380.776 6	- 2380.934 6	- 298.0564	- 2386.1915142 5	-2385.2285
ts3'_b -aa- c10	- 2381.539 8	0.6896 94	- 2380.785 2	- 2380.942 1	- 273.9343	- 2386.1922180 4	-2385.2285

ts3'_b -aa- c11	- 2381.538	0.6898 9	- 2380.783 3	- 2380.939 5	- 301.0522	- 2386.1899442 8	-2385.2285
ts3'_b	-	0 6897	-	-	_	-	
-aa-	2381.537	51	2380.782	2380.939	-	2386.1901799	-2385.2268
c12	3	51	5	7	281.9301	8	

3. Ligand non-participation in C–H activation and insertion:

ts-1'a	- 2146.150 6	0.5181 13	- 2145.580 5	- 2145.711 9	- 436.6324	- 2150.2517966 3	-2149.412069
ts-1'b	- 2374.853 4	0.5819 88	- 2374.211	- 2374.360 4	- 1144.373 9	- 2379.4260737 3	- 2378.518059 2
ts- 1'c1	- 2374.859 1	0.5813 02	- 2374.217 3	- 2374.366 4	- 1121.517 4	- 2379.4343307 9	- 2378.527017 9
ts- 1'c2	- 2374.862 2	0.5816 18	- 2374.220 2	- 2374.368 8	- 1158.865 0	- 2379.4322103 7	- 2378.524855 8
ts- 1'c3	- 2374.864 4	0.5818 42	- 2374.222 3	- 2374.370 6	- 1167.889 9	- 2379.4311132 8	- 2378.523873 6
ts- 1'c4	- 2374.857	0.5818 3	- 2374.215 1	- 2374.363 1	- 1158.697 9	- 2379.4280753 6	- 2378.519836 5

ts- 1'c5	- 2374.839 9	0.5817 15	- 2374.198 2	- 2374.345 5	- 1119.736 2	- 2379.4117375 3	- 2378.504226 6					
4. Arene site selectivity (ortho- vs para-):												
ts-1o	- 2010.327 2	0.4123 35	- 2009.868 4	- 2009.989 4	- 1136.403 8	- 2014.0809551 2	- 2013.322784 8					
ts-1o- c2	- 2010.326 4	0.4127 28	- 2009.867 5	- 2009.987 3	- 974.1986	- 2014.0754951 4	- 2013.317891 6					
ts-1o'	- 2146.191 6	0.5181 62	- 2145.621 7	- 2145.753 1	- 1079.014 6	- 2150.2836752 5	-2149.445889					
ts-30	- 2017.002 5	0.5204 45	- 2016.430 9	- 2016.560 9	- 330.9693	- 2020.8357802 2	-2020.021731					
int-4o	- 2017.037 3	0.5230 08	- 2016.463 3	- 2016.591 9	+	- 2020.8678039 5	-2020.052957					
ts-1p	- 2010.335 9	0.4121 69	- 2009.877 2	- 2009.998 4	- 1147.996 6	- 2014.0921925 9	- 2013.332518 6					
ts-1p- c2	- 2010.337 3	0.4123 06	- 2009.878 7	- 2009.999 2	- 1129.467 5	- 2014.0909101 4	- 2013.332141 8					

ts-1p'	- 2146.181	0.5182	- 2145.611	- 2145.742	-	- 2150.2710257	-2149.431512
	4	9	2	5	/44.9434	2	
ts-3p	- 2017.011 5	0.5207 13	- 2016.439 9	- 2016.568 8	-293.7	- 2020.8506834 1	-2020.036795
int-4p	- 2017.046 4	0.5229 73	- 2016.472 5	- 2016.601 4	+	- 2020.8846075 0	-2020.068617
5. Boltz	zmann samp	oling for 1	,2-migrato	ry			
insertio	on:						
<i>trans</i> - d1-c1	- 2017.012 6	0.5201 25	- 2016.441 1	- 2016.571 5	- 305.7022	- 2020.8554024 9	-2020.038678
<i>trans</i> - d1-c2	- 2017.014 2	0.5201 58	- 2016.442 8	- 2016.572 8	- 293.1491	- 2020.8556619 3	-2020.039368
<i>trans</i> - d1-c3	- 2017.012 3	0.5198 17	- 2016.441 2	- 2016.571 6	- 277.2951	- 2020.8532857 9	- 2020.037741 9
<i>trans</i> - d1-c4	- 2017.012 6	0.5200 1	- 2016.441 2	- 2016.571 8	-316.8	- 2020.8530009 1	-2020.036383

WILEY-VCH

<i>trans</i> - d1-c5	2017.014 9	0.5204 54	2016.443 4	2016.572 8	-316.9	2020.8539279 1	-2020.037906
<i>trans-</i> d1-c6	- 2017.008 5	0.5197 82	- 2016.437 3	- 2016.568	- 317.3912	- 2020.8522987 7	-2020.034701
<i>trans-</i> d1-c7	- 2017.014 4	0.5205 09	- 2016.442 8	- 2016.572 5	- 315.0322	- 2020.8530853 6	-2020.037854
<i>trans-</i> d1-c8	- 2017.016 8	0.5208 16	- 2016.445 3	- 2016.573 6	- 311.5392	- 2020.8536826 7	-2020.038209
<i>trans-</i> d1-c9	- 2017.009 5	0.5198 96	- 2016.438 3	- 2016.568 5	- 337.4155	- 2020.8490570 4	-2020.033366
<i>trans</i> - d2-c1	- 2017.014 1	0.5196 63	- 2016.443 1	- 2016.573 3	- 282.5387	-2020.85718	-2020.040593
<i>trans</i> - d2-c2	- 2017.014 9	0.5196 12	- 2016.444	- 2016.573 7	- 308.8734	-2020.856582	-2020.040347
<i>trans</i> - d2-c3	- 2017.017 3	0.5202 44	- 2016.446	- 2016.575	- 288.8986	- 2020.8566662 6	-2020.040614

WILEY-VCH

<i>trans</i> - d2-c4	- 2017.017 8	0.5203 81	- 2016.446 5	- 2016.575	- 304.4657	-2020.855951	-2020.040502
<i>trans</i> - d2-c5	- 2017.012 8	0.5198 58	- 2016.441 6	- 2016.571 4	- 282.6224	-2020.8542	-2020.037271
<i>trans</i> - d2-c6	- 2017.014 6	0.5198 44	- 2016.443 6	- 2016.572 9	- 284.4537	-2020.854195	-2020.038113
<i>trans</i> - d2-c7	- 2017.011 1	0.5198 6	-2016.44	- 2016.570 1	- 262.2307	- 2020.8531970 9	-2020.037409
<i>trans</i> - d2-c8	- 2017.014 7	0.5197 73	- 2016.443 8	- 2016.573	- 303.2176	-2020.853935	-2020.038479
<i>trans</i> - d2-c9	- 2017.010 5	0.5201 14	- 2016.439 3	- 2016.568 8	- 258.7607	- 2020.8509175 9	-2020.035064
<i>cis-</i> d1-c1	- 2017.011 4	0.5197 7	- 2016.440 3	- 2016.570 6	- 293.1446	- 2020.8545480 9	-2020.038653
<i>cis</i> - d1-c2	- 2017.014 3	0.5202 43	- 2016.443	- 2016.572 3	- 289.5588	- 2020.8546081 5	-2020.038579

WILEY-VCH

<i>cis-</i> d1-c3	- 2017.009 4	0.5198 8	- 2016.438 1	- 2016.568 6	- 305.4801	- 2020.8529871 9	-2020.036652
<i>cis-</i> d1-c4	- 2017.012 8	0.5202 44	- 2016.441 4	- 2016.571	- 296.5738	- 2020.8540071 6	-2020.037311
<i>cis-</i> d1-c5	- 2017.013 2	0.5200 84	- 2016.442 1	- 2016.571 3	- 287.1232	- 2020.8534278 3	-2020.038021
<i>cis-</i> d1-c6	- 2017.012	0.5201 64	- 2016.441 8	- 2016.568 8	- 295.7306	- 2020.8532794 5	-2020.037221
<i>cis-</i> d1-c7	- 2017.012	0.5207 87	- 2016.440 5	- 2016.568 9	- 300.2449	- 2020.8480517 7	-2020.033502
<i>cis-</i> d1-c8	- 2017.010 3	0.5208 06	- 2016.438 6	- 2016.567 4	- 308.1908	- 2020.8478232 8	-2020.03263
<i>cis-</i> d1-c9	- 2017.005 1	0.5211 4	- 2016.433 3	- 2016.561 8	- 314.0032	- 2020.8401955 6	-2020.025393
<i>cis-</i> d2-c1	- 2017.010 3	0.5201 14	- 2016.438 9	- 2016.569 1	- 298.4609	- 2020.8528853 9	-2020.037075

WILEY-VCH

<i>cis-</i> d2-c2	- 2017.010 9	0.5204 54	- 2016.439 3	- 2016.569 1	- 300.5416	- 2020.8532499 6	-2020.03695
<i>cis-</i> d2-c3	- 2017.012 4	0.5204 31	- 2016.441 1	- 2016.570 2	- 287.7811	- 2020.8536031 4	-2020.038019
<i>cis-</i> d2-c4	- 2017.011 7	0.5201 84	- 2016.440 4	- 2016.570 2	- 300.4347	- 2020.8521707 6	-2020.037598
<i>cis-</i> d2-c5	- 2017.010 1	0.5203 28	- 2016.438 6	- 2016.568 7	- 309.4578	- 2020.8515561 3	-2020.036441
<i>cis-</i> d2-c6	- 2017.007 9	0.5202 58	- 2016.436 4	- 2016.566 7	- 313.6194	- 2020.8512690 3	-2020.034999
<i>cis-</i> d2-c7	- 2017.008 2	0.5203 27	- 2016.436 8	- 2016.565 7	-296.732	- 2020.8498942 2	-2020.033341
<i>cis-</i> d2-c8	- 2017.003 6	0.5207 16	- 2016.431 9	- 2016.561 5	- 311.8461	- 2020.8461443 5	-2020.028735
<i>cis-</i> d2-c9	- 2017.002 8	0.5206 98	- 2016.431 1	- 2016.560 6	- 316.5124	- 2020.8444883 0	-2020.028321

WILEY-VCH

cy- d1-c1	- 2015.824 5	0.5009 39	- 2015.275 2	- 2015.399 7	- 309.5106	- 2019.6462757 0	-2018.840491
cy- d1-c2	- 2015.823 3	0.5013 42	- 2015.273 7	- 2015.398	- 314.2776	- 2019.6457994 2	-2018.839852
cy- d1-c3	- 2015.826 6	0.5012 53	- 2015.277 1	- 2015.400 6	- 301.2641	- 2019.6445767 2	-2018.840282
cy- d1-c4	- 2015.821	0.5013 07	- 2015.271 2	- 2015.395 6	- 292.1391	- 2019.6428992 9	-2018.83771
cy- d2-c1	- 2015.823 6	0.5009 56	- 2015.274 4	- 2015.397 8	-304.458	- 2019.6457031 0	-2018.839656
cy- d2-c1 cy- d2-c2	- 2015.823 6 - 2015.825 2	0.5009 56 0.5009 5	- 2015.274 4 - 2015.276	- 2015.397 8 - 2015.399 3	-304.458 -291.53	- 2019.6457031 0 - 2019.6448124 2	-2018.839656 -2018.840874
cy- d2-c1 cy- d2-c2 cy- d2-c3	- 2015.823 6 - 2015.825 2 - 2015.819 3	0.5009 56 0.5009 5 0.5008 87	- 2015.274 4 - 2015.276 - 2015.269 8	- 2015.397 8 - 2015.399 3 - 2015.394 1	-304.458 -291.53 - 276.5101	- 2019.6457031 0 - 2019.6448124 2 - 2019.6439305 1	-2018.839656 -2018.840874 -2018.838106

6. Isodesmic studies:

WILEY-VCH

pyridi ne	- 247.7627 6	0.0894 73	- 247.6659 6	- 247.7041 1	+	-248.30904588	-248.2228936
ts-3- iso	- 2264.788 5	0.6108 71	- 2264.117 5	- 2264.267 2	- 325.2881	- 2269.1677108 1	-2268.26553
ts-30- iso	- 2264.803 6	0.6118 69	- 2264.132 7	- 2264.277 6	- 285.3699	- 2269.1666541 2	-2268.26716
ts-3p- iso	- 2264.794 2	0.6116 33	- 2264.123	- 2264.270 8	- 310.8723	- 2269.1700187 6	-2268.27014
7. <i>cis</i> -h	exene produ	ıct selecti	vity:				
<i>cis-</i> int-4	- 2017.049 1	0.5222 86	- 2016.475 5	- 2016.605 0	+	- 2020.8908183 1	-2020.074007
<i>cis-</i> ts- 6	- 2017.047 7	0.5221 16	- 2016.475 3	- 2016.602 6	-56.3933	- 2020.8881911 8	-2020.071351
<i>cis-</i> int-7	- 2017.045 8	0.5218 79	- 2016.473 3	- 2016.600 9	+	-2020.878591	-2020.062478
<i>cis-</i> ts- 7	-2017.04	0.5176 15	- 2016.472 1	- 2016.598 9	- 894.6881	- 2020.8699586 6	-2020.051674

WILEY-VCH

<i>cis-</i> int-8	2017.065 2	0.5221 18	2016.491 8	2016.621 1	+	- 2020.8893887 0	- 2020.073698 04
<i>cis</i> -ts- 6a	- 2017.038 5	0.5224 31	- 2016.465 9	- 2016.593 1	-99.8893	- 2020.8792089 8	-2020.061699
<i>cis-</i> int-7a	- 2017.039 4	0.5218 02	- 2016.467	- 2016.594 5	+	- 2020.8770836 8	-2020.058029
<i>cis</i> -ts- 7a	- 2017.034 6	0.5180 17	- 2016.466 5	- 2016.592 8	- 978.8647	- 2020.8649285 9	-2020.046586
<i>cis-</i> int-8a	- 2017.060 4	0.5228 8	- 2016.486 6	- 2016.614 9	+	- 2020.8851595 8	-2020.069733
<i>cis-</i> ts- 4b	- 2017.016 3	0.5205 14	- 2016.445	- 2016.573 9	-82.2613	- 2020.8602446 6	-2020.041432
<i>cis-</i> int-5b	- 2017.034 2	0.5203 72	- 2016.462 2	- 2016.593 0	+	- 2020.8734714 1	-2020.056019
<i>cis</i> -ts- 5b	- 2017.029	0.5178 17	- 2016.459 9	- 2016.589 8	- 366.9912	- 2020.8643520 8	-2020.049118

<i>cis-</i> int-6b	- 2017.031 8	0.5189 39	- 2016.461 1	- 2016.591 8	+	- 2020.8635495 5	-2020.05077
<i>cis</i> -ts- 5b-c2	- 2017.015 8	0.5180	- 2016.446 8	- 2016.575 6	- 480.8873	- 2020.8542316 6	-2020.038656
8. cyclo	hexene pro	duct selec	ctivity:				
cy- int-4	- 2015.863 9	0.5032 7	- 2015.312 3	- 2015.435 8	+	- 2019.6837660 1	-2018.876402
cy-ts- 6a	- 2015.859 1	0.5033 92	- 2015.308 4	- 2015.429 7	-88.5455	- 2019.6741799 0	-2018.868046
cy- int-7a	- 2015.859 1	0.5025 39	- 2015.308 4	- 2015.431 1	+	- 2019.6741475 5	-2018.867609
cy-ts- 7a	- 2015.847 7	0.4985 27	- 2015.301 7	- 2015.422 7	- 1032.925 6	- 2019.6597835 8	-2018.851573
cy- int-8a	- 2015.871 7	0.5032 44	- 2015.320 1	- 2015.443 5	+	- 2019.6780552 2	-2018.872553

2.9.11 Optimized geometries

Geometries of all optimized structures (in *.xyz* format with their associated energy in Hartrees) are included in a separate folder named *structures_xyz* with an associated README file. All these data have been deposited with this Supporting Information and uploaded to zenodo.org (DOI: 10.5281/zenodo.2775841).

3. References:

Full reference for ref (1):

Gaussian 16, Revision A.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 16, Revision A.01. 2016.
- (2) Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G. MN15: A Kohn–Sham Global-Hybrid Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. *Chem. Sci.* 2016, 7 (8), 5032– 5051.

- (3) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta* 1990, 77 (2), 123–141.
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence {,} Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7 (18), 3297–3305.
- (5) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.*2006, 8 (9), 1057–1065.
- (6) Mekareeya, A.; Walker, P. R.; Couce-Rios, A.; Campbell, C. D.; Steven, A.; Paton, R. S.; Anderson, E. A.; Ross Walker, P.; Couce-Rios, A.; Campbell, C. D.; et al. Mechanistic Insight into Palladium-Catalyzed Cycloisomerization: A Combined Experimental and Theoretical Study. J. Am. Chem. Soc. 2017, 139 (29), 10104–10114.
- (7) Deb, A.; Hazra, A.; Peng, Q.; Paton, R. S.; Maiti, D. Detailed Mechanistic Studies on Palladium-Catalyzed Selective C–H Olefination with Aliphatic Alkenes: A Significant Influence of Proton Shuttling. J. Am. Chem. Soc. 2017, 139 (2), 763–775.
- (8) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. *Phys. Chem. Chem. Phys.* 2008, 10 (44), 6615–6620.
- Marenich, A. V; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113* (18), 6378–6396.
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. *Chem. – A Eur. J.* 2012, *18* (32), 9955–9964.
- (11) Funes-Ardoiz, I.; Paton, R. S. GoodVibes v1.0.1 http://doi.org/10.5281/zenodo.56091.
- (12) E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. W. NBO Version 3.1,.
- (13) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan,

D. N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. *J. Chem. Theory Comput.* **2011**, *7* (3), 625–632.

- (14) Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. A Local Density Functional Study of the Structure and Vibrational Frequencies of Molecular Transition-Metal Compounds. *J. Phys. Chem.* **1992**, *96* (16), 6630–6636.
- (15) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation. *Can. J. Chem.* **1992**, *70* (2), 560–571.
- (16) Schrödinger, LLC. The {PyMOL} Molecular Graphics Development Component, Version~1.8; 2015.
- (17) Maji, A.; Guin, S.; Feng, S.; Dahiya, A.; Singh, V. K.; Liu, P.; Maiti, D. Experimental and Computational Exploration of Para-Selective Silylation with a Hydrogen-Bonded Template. *Angew. Chemie - Int. Ed.* **2017**, *56* (47), 14903–14907.
- Maji, A.; Dahiya, A.; Lu, G.; Bhattacharya, T.; Brochetta, M.; Zanoni, G.; Liu, P.; Maiti,
 D. H-Bonded Reusable Template Assisted Para-Selective Ketonisation Using Soft
 Electrophilic Vinyl Ethers. *Nat. Commun.* 2018, 9 (1).
- Wheeler, S. E.; Houk, K. N.; Schleyer, P. V. R.; Allen, W. D. A Hierarchy of Homodesmotic Reactions for Thermochemistry. *J. Am. Chem. Soc.* 2009, *131* (7), 2547– 2560.
- (20) Wheeler, S. E. Homodesmotic Reactions for Thermochemistry. *Wiley Interdisciplinary Reviews: Computational Molecular Science*. 2012, pp 204–220.
- (21) Peng, Q.; Duarte, F.; Paton, R. S. Computing Organic Stereoselectivity from Concepts to Quantitative Calculations and Predictions. *Chem. Soc. Rev.* 2016, 45 (22), 6093–6107.
- (22) Fang, L.; Saint-Denis, T. G.; Taylor, B. L. H.; Ahlquist, S.; Hong, K.; Liu, S.; Han, L.; Houk, K. N.; Yu, J. Q. Experimental and Computational Development of a Conformationally Flexible Template for the Meta-C-H Functionalization of Benzoic Acids. *J. Am. Chem. Soc.* 2017, *139* (31), 10702–10714.

4. Author Contributions

T.K.A. and R.M. conceived and developed the palladium catalyzed *meta*-selective C–H allylation. T.K.A. and R.M. optimized the reaction conditions. TKA, M.S.S., S.M. and N.P. prepared the starting materials and identified the substrates scope. TKA and M.S. conducted the mechanistic investigations. X.Z. designed and performed the computational studies. R.S.P supervised the computational studies. D.M. supervised the project. T.K.A. and X.Z. wrote the manuscript with input from R.S.P. and D.M. All authors read and commented on the manuscript.