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S1. Generation of Training and Test Sets for Bulk Water

S1.1 Ab initio molecular dynamics (AIMD) 
After a box of bulk water was set up, classical MD was first performed to equilibrate the solvent 
system, sampling the system with in the NVT ensemble. This was carried out using the 
GROMACS molecular dynamics package (version 2019.6)1–6 with the Optimised Potential for 
Liquid Simulations (OPLS-AA) forcefield7,8 with periodic boundary conditions (PBC). Initial 
system energy minimisation was carried out to remove any unphysical clashes in the initial 
guess structures (Fmax < 10 kJ mol-1 nm-1) or until machine precision. A 6 Å cut-off was applied 
for both short-range electrostatic and Van der Waals interactions.9 Long-range electrostatics 
were treated with a fourth-order Particle Mesh Ewald (PME) method. The linear constraint 
solver algorithm (LINCS)10 with constraints on H-bonds was used for simulations. The system 
temperature was kept constant at 300 K using the velocity rescaling method,11 with a time 
constant of 100 fs. Initial random velocities were drawn from the Maxwell-Boltzmann 
distribution at 300 K. The system was equilibrated at constant volume (NVT), with a 1 fs 
timestep, for 50 ns. 

Ab initio MD was performed with the method outlined in the Methods section (see main text). 
The last image from the end of the classical NVT equilibration was used as the starting 
configuration for AIMD. The AIMD NVT ensemble was sampled at a timestep of 1 fs for a 
total of 100 ps with the Nosé-Hoover thermostat. 

S1.2 Generation of Training Datasets

Table S1 Summary of bulk water training and test sets for evaluation of the MLIPs.

Dataset Number of 
molecules

Temp 
/ K

Number of 
datapoints Dataset description

T1 100 300 800 Every 3rd point of T2
T2 300 2400 800 points from each of  1V, 1.2V, 0.8V
E1 300 200 Every 3rd point of E2
E2 300 600 200 points from each of  1V, 1.2V, 0.8V
E3 473 1000 1V
E4 60 300 1000 1V
E5 473 1000 1V 
E6 200 300 1000 1V 
E7 473 1000 1V

We prepared bulk water in a cubic box at the experimental density, which we term 1V (1× 
volume) for simplicity. We additionally prepared water at reduced and increased densities 
corresponding to 1.2V and 0.8V, respectively, fixing the number of water molecules in the 
system at 100. The procedure outlined in Section S1.1 was carried out for bulk water at the 
three different densities (volumes) at 300 K. This generated total of 30000 datapoints calculated 
at RPBE-D3 level of theory, with 10000 points at each density. 

We denote this dataset as O1 (original dataset). From O1, a dataset of 1000 datapoints was 
constructed by taking every 30th datapoint. This prevents similar datapoints from being 
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represented too frequently. This dataset is split with an 80:20 ratio to give the T1 training set 
with 800 datapoints (T for train) and the E1 test set with 200 datapoints (E for error). 

To glean insights into how dataset size affects the performance of different machine learning 
(ML) models, a second dataset for ML training was prepared. This larger dataset of 3000 
datapoints was constructed by taking every 10th datapoint from O1. This dataset is split with 
an 80:20 ratio to give T2 with 2400 datapoints and E2 with 600 datapoints. T1 and T2 will be 
separately used to assess the performance of the different ML models.

S1.3 Generation of Test Datasets
Apart from test datasets E1 and E2, we further prepared different datasets to test the ability of 
the different ML models to extrapolate to systems at different temperatures and with different 
amounts of water.

A system of 100 water molecules at experimental density (1V) was subjected to AIMD at a 
temperature of 473K (200ºC or twice the boiling point of water). This is to test the ability of 
ML models to extrapolate to configurations that are further away from equilibrium than those 
that were obtained at 300 K. The 10000 datapoints in this high temperature simulation were 
trimmed by taking every 10th datapoint to assemble a new test set, E3, with a total of 1000 
datapoints.

To test the ability of the ML models to extrapolate to smaller systems, a system of 60 water 
molecules at experimental density (1V) was subjected to AIMD at 300 K and 473 K, separately. 
In each case, the 10000 datapoints generated were trimmed by taking every 10th datapoint to 
assemble a new test set, each with a total of 1000 datapoints. These are denoted as E4 and E5 
for the data generated at 300 K and 473 K, respectively.

To test the ability of the ML models to extrapolate to larger systems, a system of 200 water 
molecules at experimental density (1V) was subjected to AIMD at 300 K and 473 K, separately. 
In each case, the 10000 datapoints generated were trimmed by taking every 10th datapoint to 
assemble a new test set, each with a total of 1000 datapoints. These are denoted as E6 and E7 
for the data generated at 300 K and 473 K, respectively.

All the datasets described above are summarised in Table S1.

S2. Performance of Selected MLIPs

In this section, we first briefly describe the different MLIPs used in Section S2.1. In the 
Sections S2.2 to S2.5, we will then discuss the performance of ML potentials trained on the 
smaller dataset T1 and on the larger dataset T2.

S2.1 Performance Measure via Root Mean Square Error
To measure the performance of each ML model, we calculated the Root Mean Square Error 
(RMSE) for the energy and force errors for each system as follows:
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where y is either the energy or the force, subscripts “ML” and “DFT” refer to these values 
calculated using either the ML potential or DFT, respectively, and n is the number of 
configurations in the dataset. The RMSE for energy per atom is obtained by dividing the RMSE 
calculated above by the number of atoms in the system, and therefore tends to be smaller for 
large systems such as our simulations with 100 water molecules.

S2.2 Brief Overview of Selected MLIPs

Three machine learning interatomic potentials (MLIPs), namely, the moment tensor potential 
(MTP)12, ANI,13 and Schnet14 were used to train and predict the quantum mechanical energy 
and forces of bulk solvent systems using the datasets constructed in Section S1. We herein 
briefly outline how these models work. Interested readers are encouraged to consult the original 
works for more details.

MTP is a systematically improvable, non-parametric interatomic potential based on linear 
regression using invariant polynomial basis functions. The underlying assumption is that the 
total energy of a structure can be approximated by the sum of the atomic potentials of all atoms 
in the structure, i.e.: 

where V(ni) is the local atomic potential of ith atom that can be expanded as a linear combination 
of basis functions Bα,

 .

ξα are parameters found by fitting to training data.

The basis functions Bα can be represented as moment tensors or moments (hence the name of 
this potential) containing both the radial and the angular parts for the description of atomic 
environments: 

where fμ are functions that describe the radial part (with a hyperparameter NQ defining the size 
of the radial basis, see original work12,15) and describes the angular part.

The parameters µ and ν together define the level of the moment via 

 , 

giving another important hyperparameter of MTP model, levmax. These two hyperparameters 
NQ and levmax should be chosen to balance both the accuracy and cost of MTP.



5

Both Schnet and ANI are ML models based on neural networks. Schnet is a type of deep 
learning that aims to predict properties from molecular structures using graph neural networks. 
The molecular structures are encoded by both the nuclear charges (Z) and the interatomic 
distances (D). Atom types are described by a vector of coefficients, ci, while D is expanded to 
yield feature vectors encoding interatomic interactions between atoms i and j, vij. The atom 
types are iteratively refined by interatomic interactions 

to map out local and neighboring atomic environments. The total energy is the sum of all 
predicted atomic energies. 

ANI is a neural network based on modified Behler and Parrinello symmetry functions (BPSFs). 
The BPSFs are used to compute atomic environment vector (AEV)  which describes both 
the radial and angular features in atom i’s local environment via

 

.

The radial parameters η changes the width of the Gaussian functions and Rs shifts the centre of 
their peaks whereas the angular parameter ζ changes the width of the peaks in angular 
environment (Figure S1).

Figure S1 Examples of the symmetry functions used in ANI with different parameter sets for (left) 
radial symmetry functions, and (right) modified angular symmetry functions. Figure adapted from 
reference 13. 

S2.3 Performance of Moment Tensor Potential (MTP)
For base case MTP training, Chebyshev polynomial basis functions were used. The minimal 
distance between atomic interactions in the training set, min_dist, was set to 0.8 Å, whereas the 
cutoff radius, max_dist, introduced to ensure a smooth potential when atoms leave or enter the 



6

interaction neighborhood, was set to 5.0 Å. An energy weight of 1 and a force weight of 
0.000167 were used. The size of the radial basis, NQ, was set to 8. A total of 500 cycles of 
training iterations were performed. 

S2.3.1 Number of basis functions

Keeping the base case settings constant, we tuned the value of levmax, a key hyperparameter for 
MTP as it determines the number of basis functions used (Table S2). Independent of training 
set used, the energy per atom and force errors are consistent, with energy per atom error of the 
order of 10-4 eV and the force error of the order of 10-2 eV Å-1. The energy and force errors 
decrease slightly with increasing levmax. We settled on a value of levmax=18, which provides a 
good balance of speed and accuracy. 

Table S2 Screening of the levmax hyperparameter for MTP. Energy per atom and force RMSEs are 
provided for MTP trained on T1 and tested on E1 and E3–7. The selected hyperparameter value is 
highlighted with bold blue font. See Table S1 for definitions of the datasets. 

MTP potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

levmax T1 E1 E3 E4 E5 E6 E7
16 0.35 0.36 0.54 0.41 0.74 0.26 0.40
18 0.28 0.27 0.48 0.36 0.60 0.21 0.39
20 0.26 0.29 0.44 0.34 0.54 0.20 0.31

Force RMSEs / eV Å-1

16 0.055 0.055 0.067 0.050 0.066 0.052 0.068
18 0.045 0.045 0.054 0.040 0.053 0.043 0.055
20 0.046 0.056 0.041 0.055 0.043 0.057 0.046

S2.3.2 Replicate training with optimized hyperparameters

We present in Table S3 the results of three replicates of MTP trained with our optimized 
hyperparameters: levmax=18, using the T1 dataset.

Table S3 Energy per atom and force RMSEs for MTP potentials trained on T1 dataset at three 
independent runs with optimized hyperparameters and tested on E1 and E3–7. Average and standard 
errors of the three runs are also given. See Table S1 for definitions of the datasets.

MTP potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Run T1 E1 E3 E4 E5 E6 E7
1 0.28 0.27 0.48 0.36 0.60 0.21 0.39
2 0.27 0.27 0.53 0.35 0.63 0.22 0.46
3 0.25 0.27 0.64 0.37 0.69 0.23 0.56

Average 0.27 0.27 0.56 0.36 0.64 0.22 0.47
Std. Err. 0.01 0.00 0.09 0.01 0.03 0.01 0.05

Force RMSEs / eV Å-1

1 0.045 0.045 0.054 0.040 0.053 0.043 0.055
2 0.044 0.045 0.053 0.040 0.052 0.042 0.054
3 0.044 0.044 0.051 0.040 0.050 0.042 0.052

Average 0.045 0.045 0.053 0.040 0.052 0.042 0.054
Std. Err. 0.000 0.000 0.001 0.000 0.001 0.000 0.001
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S2.3.3 MTP training using larger training dataset T2 (2400 datapoints)

To study the effect of training dataset size on the performance of MTP, we carried out similar 
benchmarking studies using a larger training dataset T2 (2400 datapoints) We tuned the value 
of levmax as before, giving the errors shown in Table S4. Similar to the case with the T1 dataset, 
we settled on a value of levmax=18. 

Table S4 Screening of the levmax hyperparameter for MTP with the T2 dataset. Energy per atom and 
force RMSEs are provided for MTP trained on T2 (2400 datapoints) and tested on E2–7. The selected 
hyperparameter value is highlighted with bold blue font. See Table S1 for the definition of the datasets.

MTP potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

levmax T2 E2 E3 E4 E5 E6 E7
16 0.34 0.33 0.66 0.43 0.70 0.25 0.53
18 0.31 0.32 0.54 0.39 0.63 0.24 0.38
20 0.26 0.28 0.40 0.32 0.52 0.21 0.29

Force RMSEs / eV Å-1

16 0.054 0.053 0.063 0.049 0.062 0.051 0.064
18 0.049 0.048 0.058 0.044 0.057 0.046     0.059
20 0.043 0.043 0.051 0.039 0.050 0.041 0.052

We additionally present in Table S5 the results of three replicates of MTP trained with our 
optimized hyperparameters: levmax=18, using the T1 dataset.

Table S5 Energy per atom and force errors for MTP potentials trained on T2 datasets at three 
independent runs with levmax = 18 and tested on E2–7. Average and standard errors of the three runs are 
also given. See Table S1 for definitions of the datasets.

MTP potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

Run T2 E2 E3 E4 E5 E6 E7
1 0.31 0.32 0.54 0.39 0.63 0.24 0.38
2 0.28 0.29 0.58 0.38 0.65 0.22 0.45
3 0.31 0.33 0.78 0.41 0.79 0.00 0.64

Average 0.30 0.31 0.63 0.39 0.69 0.16 0.49
Std. Err. 0.01 0.01 0.07 0.01 0.05 0.08 0.08

Force RMSEs / eV Å-1

1 0.049 0.048 0.058 0.044 0.057 0.046 0.059
2 0.048 0.048 0.057 0.042 0.056 0.045 0.059
3 0.053 0.053 0.065 0.047 0.064 0.050 0.067

Average 0.050 0.050 0.060 0.045 0.059 0.047 0.061
Std. Err. 0.002 0.002 0.002 0.001 0.002 0.001 0.003

S2.4 Performance of Schnet 
In the base case, Schnet training was performed with 6 interaction layers using a cosine cutoff 
function with a cutoff radius of 10.0 Å for atomic interactions. A total of 128 feature vectors 
for each atomic type and 50 Gaussian functions for interatomic distance expansion were used. 
An initial learning rate of 1e-4 with a minimal learning rate of 1e-6, and a learning rate decay of 
0.8 and learning rate patience of 25 was used. The tradeoff between energy and force, parameter 
ρ, for the overall cost function was set to 0.1. Atomic energy references for ‘H’ atom of -0.5 
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Hartree and for ‘O’ atom of -75.0645 Hartree were used. All models are trained on mini-batch 
stochastic gradient descent using the ADAM optimizer16. 

We first used the smaller training set, T1, to perform hyperparameter tuning, as for neural 
network (NN)-based ML models, the trained results can vary vastly on the hyperparameter 
choices. 

S2.4.1 Batch size

The batch size is one of the key hyperparameters for NN-based MLIPs. Therefore, we first 
screened for the optimal batch size, using 1000 training epochs each for ease of comparison 
(Table S6). A batch size of 4 gives the best results overall. However, the force errors for both 
the training and test sets are one order of magnitude worse than the force prediction from MTP 
(Table S3). The energy per atom errors for the training set for batch sizes 4, 8, and 16 are of 
the same order of magnitude (but still larger) than the energy per atom error from MTP (Table 
S3) However, the test errors are 1–2 orders of magnitude worse than MTP, indicating Schnet’s 
poorer ability to interpolate and extrapolate when only a small training set (800 datapoints) is 
used, as NN models are known to perform better with large datasets. We examine in Section 
S2.3.6 if training using the larger T2 dataset with 2400 datapoints can help improve the test 
prediction. 

Table S6 Screening of the batch size hyperparameter for Schnet. Energy per atom and force RMSEs 
are provided for Schnet potentials trained on T1 and tested on E1 and E3–7. The selected 
hyperparameter value is highlighted with bold blue font. See Table S1 for definitions of the datasets.

Schnet potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Batch 
Size T1 E1 E3 E4 E5 E6 E7

4 0.69 1.16 11.20 5.82 9.30 1.41 10.50
8 0.72     1.20 11.20 6.14 8.54 2.16 11.40
16 0.85 1.40 13.00 4.52 12.10 5.98 7.05
24 1.04 1.54 15.00 3.82 20.30 16.70 3.58
32 1.04 1.62 16.40 4.06 16.60 6.00 9.64

Force RMSEs / eV Å-1

4 0.278 0.299 0.378 0.325 0.397 0.284 0.361
8 0.287 0.298 0.374 0.321 0.392 0.277 0.366
16 0.312 0.318 0.401 0.337 0.414 0.300 0.420
24 0.348 0.353 0.455 0.372 0.468 0.338 0.453
32 0.357 0.361 0.473 0.379 0.480 0.343 0.474

S2.4.2 Number of epochs

Using a batch size of 8, we next examined the effect of the number of epochs on the 
performance of Schnet-trained potentials for energy per atom and force predictions (able S7 ). 
In mini-batch stochastic gradient descent, the method used by Schnet and ANI for cost function 
minimisation, this is the number of times that all the sub-samples have passed through the NN 
for training. Training for too few epochs would underfit the model, whereas training for too 
many epochs may overfit the model. Note that when we specified a limit of 1500 and 2000 
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epochs, the trained potentials converged after a total of 1326 and 1458 epochs, respectively. 
The energy per atom and force errors for the training and test sets improved marginally with 
an increasing number of epochs, although they are still of the same order of magnitude.

able S7 Screening of the max epochs hyperparameter for Schnet. Energy per atom and force RMSEs 
are provided for Schnet potentials trained on T1 and tested on E1 and E3–7. The selected 
hyperparameter value is highlighted with bold blue font. See Table S1 for definitions of the datasets.

Schnet potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Max 
Epochs T1 E1 E3 E4 E5 E6 E7

1000 0.72 1.20 11.20 6.14 8.54 2.16 11.40
1500 0.72 1.19 10.80 7.51 8.32 2.56 10.90
2000 0.78 1.17 10.60 6.76 8.28 5.87 14.30

Force RMSEs / eV Å-1

1000 0.287 0.298 0.374 0.321 0.392 0.277 0.366
1500 0.285 0.297 0.374 0.320 0.391 0.276 0.285
2000 0.282 0.296 0.372 0.319 0.392 0.276 0.362

S2.4.3 Learning rate

The learning rate controls the step size for gradient descent along the loss function. A large 
learning rate may approach the cost function minimum faster, but the model may miss the 
minimum on the loss function and oscillate about this minimum. On the other hand, if a learning 
rate is too small, the model has a higher possibility of reaching the minimum but at a much 
longer training time. With a batch size of 8 and 1000 training epochs, we further tested two 
other values, 1×10-3 and 1×10-5, in addition to the initial learning rate (lr) of 1×10-4  used (Table 
S8). The results suggest that altering the initial learning rates does not significantly improve 
the training results.

Table S8 Screening of the initial learning rate hyperparameter for Schnet. Energy per atom and force 
RMSEs are provided for Schnet potentials trained on T1 and tested on E1 and E3–7. The selected 
hyperparameter value is highlighted with bold blue font. See Table S1 for definitions of the datasets. 

Schnet potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Initial 
Learning 

Rate
T1 E1 E3 E4 E5 E6 E7

1×10-3 1.90 2.08 21.80 4.16 21.50 1.83 22.00
1×10-4 0.72 1.20 11.20 6.14 8.54 2.16 11.40
1×10-5 1.79 2.24 18.20 22.80 3.96 40.90 58.40

Force RMSEs / eV Å-1

1×10-3 0.642 0.644 0.862 0.648 0.849 0.668 0.879
1×10-4 0.287 0.298 0.374 0.321 0.392 0.277 0.366
1×10-5 0.533 0.535 0.701 0.566 0.764 0.515 0.665
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S2.4.4 Other Hyperparameters

Table S9 Screening of other miscellaneous hyperparameters for Schnet: the energy force tradeoff 
parameter, atomic reference values, the number of Gaussian functions, and the number of feature 
vectors. Energy per atom and force RMSEs are provided for Schnet potentials trained on T1 and tested 
on E1 and E3–7. None of these hyperparameter values tested below were used as the base case values 
were found to be better. See Table S1 for definitions of the datasets.

Schnet potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Hyperparameter T1 E1 E3 E4 E5 E6 E7
ρ
0.05 0.76 1.22 11.00 5.98 8.98 2.08 7.23
0.15 0.69 1.20 12.00 5.84 9.95 2.14 12.10
Atomic 
Reference
Null 0.75 1.17 11.60 5.45 9.58 1.31 10.70
Pseudopotentials 0.69 1.20 11.40 5.56 9.19 2.23 11.50
Number of 
Gaussian 
Functions
100 0.71 1.24 11.70 4.99 9.84 3.26 12.90
Number of 
Feature Vectors
256 0.72 1.19 12.50 4.95 11.00 1.51 12.70

Force RMSEs / eV Å-1

ρ
0.05 0.284 0.295 0.371 0.319 0.389 0.277 0.395
0.15 0.291 0.301 0.379 0.322 0.399 0.277 0.362
Atomic 
Reference
Null 0.287 0.298 0.373 0.321 0.394 0.278 0.361
Pseudopotentials 0.286 0.297 0.374 0.320 0.393 0.275 0.366
Number of 
Gaussian 
Functions
100 0.284 0.299 0.376 0.321 0.395 0.275 0.359
Number of 
Feature Vectors
256 0.281 0.300 0.380 0.324 0.398 0.282 0.365

Using a batch size of 8 and 1000 training epochs, we further tested the effect of (1) varying the 
tradeoff between energy and force errors, ρ; (2) using different atomic reference values; (3) 
using different number of Gaussian functions; and (4) using different number of feature 
vectors. (Table S10).

Note that the atomic reference values are removed from the target property by the offset 
transforms in the AtomWise neural network training module during training and added back to 
the prediction after training. We tested “Null” and “Pseudopotential” values for the elements. 
For “Null”, Schnet defaults to applying no such offset transforms. The values from 
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“Pseudopotential” calculation of each single atom at the same level of theory can also be 
obtained and used as atomic reference.

We note that the test errors are not significantly improved by changing the above 
hyperparameters.

S2.4.5 Replicate training with optimized hyperparameters 

In summary, the best set of hyperparameters we obtained were: batch size of 8, 1000 training 
epochs, learning rate of 1×10-4, learning rate decay of 0.8, learning rate patience of 25, energy-
force tradeoff ρ of 0.1, atomic reference of -0.500 eV for H atoms and -75.0645 eV for O atoms, 
50 Gaussian functions, 128 features, and 6 interaction layers. Using these optimized 
hyperparameters, three Schnet potentials were independently trained to obtain the averaged 
errors (Table S10 ).

Table S10 Energy per atom and force RMSEs for three independently trained Schnet potentials on the 
T1 dataset with optimized hyperparameters and tested on E1 and E3–7. Average and standard errors of 
the three runs are also given. See Table S1 for definitions of the datasets.

Schnet potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Run T1 E1 E3 E4 E5 E6 E7
1 0.72 1.20 11.20 6.14 8.54 2.16 11.40
2 0.71 1.19 11.90 4.88 11.20 1.20 11.30
3 0.78 1.24 11.00 5.03 10.40 4.63 4.97

Average 0.74 1.21 11.40 5.35 10.10 2.66 9.23
Std. Err. 0.02 0.02 0.29 0.40 0.80 1.02 2.13

Force RMSEs / eV Å-1

1 0.287 0.298 0.374 0.321 0.392 0.277 0.366
2 0.293 0.302 0.381 0.323 0.400 0.277 0.372
3 0.288 0.298 0.371 0.322 0.393 0.278 0.358

Average 0.289 0.299 0.375 0.322 0.395 0.278 0.365
Std. Err. 0.002 0.001 0.003 0.001 0.003 0.000 0.004

S2.4.6 Schnet training using larger training dataset T2 (2400 datapoints)

With the best set of hyperparameters from tuning Schnet using T1 dataset, we assessed the 
performance of Schnet using T2 dataset as train set. The effect of different batch sizes was 
assessed again, due to the different number of datapoints used in training (Table S11). A batch 
size of 24 produces the best energy per atom errors although in general, both the energy per 
atom and force errors are of the same order of magnitude for the different batch sizes tested. 
Three replicates for a batch size of 24 were run to obtain the averaged errors (Table S12).
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Table S11 Screening of the batch size hyperparameter for Schnet. Energy per atom and force RMSEs 
are provided for Schnet potentials trained on T2 and tested on E2–7. The selected hyperparameter value 
is highlighted with bold blue font. See Table S1 for definitions of the datasets.

Schnet potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

Batch 
Size T2 E2 E3 E4 E5 E6 E7

4 0.42 0.80 10.00 6.61 7.41 1.17 10.10
8 0.43    0.77 9.25 7.53 6.25 2.42 11.20
16 0.44 0.79 10.60 6.00 8.16 2.52 10.80
24 0.67 0.96 12.70 5.80 11.60 2.12 8.60
32 0.56 0.91 11.80 6.24 10.30 7.25 7.66

Force RMSEs / eV Å-1

4 0.268 0.286 0.374 0.324 0.394 0.285 0.360
8 0.270 0.285 0.371 0.321 0.392 0.280 0.357
16 0.284 0.291 0.368 0.317 0.388 0.274 0.366
24 0.298 0.302 0.382 0.324 0.401 0.279 0.393
32 0.301 0.305 0.384 0.326 0.397 0.291 0.460

Table S12 Energy per atom and force RMSEs for Schnet potentials trained on T2 dataset at three 
independent runs with optimized hyperparameters and tested on E2–7. Averages and standard errors of 
the three runs are also given. See Table S1 for definitions of the datasets.

Schnet potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

Run T2 E2 E3 E4 E5 E6 E7
1 0.67 0.96 12.70 5.80 11.60 2.12 8.60
2 0.71 0.97 12.40 6.88 9.28 2.20 12.80
3 0.62 0.91 12.60 6.17 9.17 4.29 9.20

Average 0.66 0.95 12.60 6.28 10.00 2.87 10.20
Std. Err. 0.03 0.02 0.08 0.32 0.79 0.71 1.31

Force RMSEs / eV Å-1

1 0.298 0.302 0.382 0.324 0.401 0.279 0.393
2 0.295 0.300 0.374 0.322 0.398 0.279 0.354
3 0.295 0.300 0.376 0.322 0.395 0.285 0.388

Average 0.296 0.301 0.377 0.323 0.398 0.281 0.378
Std. Err. 0.001 0.001 0.002 0.001 0.002 0.002 0.012

S2.5 Performance of ANI 
In the base case, ANI training was performed with an initial learning rate of 1e-3 and an early 
stopping learning rate of 1e-5. A weight decay of 1e-4 and a dropout rate of 0.0 were used. The 
radial cutoff radius, RCR, was set to 5.2 Å, while the angular cutoff radius, RCA, was set to 3.5 
Å. EtaR = 16.0 Å (η in equation 3 in reference 13) was used.
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S2.5.1 Batch size

ANI potentials were trained for 1000 epochs with different batch sizes (Table S13). Both the 
energy per atom and force errors for the training and test sets for all different batch sizes fall 
on the same order of magnitude. Overall, the force errors are about one order of magnitude 
worse than the force predictions from MTP (Table S3). A batch size of 16 gives the best errors 
for both energy and force predictions.

Table S13 Screening of the batch size hyperparameter for ANI. Energy per atom and force RMSEs are 
provided for ANI potentials trained on T1 and tested on E1 and E3–7. The selected hyperparameter 
value is highlighted with bold blue font. See Table S1 for definitions of the datasets.

ANI potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Batch 
Size T1 E1 E3 E4 E5 E6 E7

4 2.61 3.01 4.55 3.96 4.77 3.74 4.63
8 1.23 1.39 2.26 1.26 2.48 0.73 2.25
16 1.15 1.15 1.47 1.47 1.89 1.29 1.03
24 1.45 1.56 8.12 1.68 7.97 1.40 8.20
32 1.67 1.78 7.21 2.06 6.89 1.24 7.15
64 1.32 1.51 8.77 1.88 8.58 1.07 9.02

128 1.22 2.02 21.30 2.86 20.90 1.24 21.10
Force RMSEs / eV Å-1

4 0.161 4.500 1.380 0.173 0.943 0.153 3.760
8 0.354 0.367 0.461 0.356 0.455 0.367 0.461
16 0.182 0.183 0.304 0.176 0.331 0.183 0.334
24 0.473 0.476 0.646 0.461 0.642 0.478 0.870
32 0.527 0.530 0.897 0.571 0.865 0.559 0.979
64 0.567 0.567 0.737 0.573 0.724 0.597 0.752

128 0.488 0.640 0.785 0.653 0.770 0.681 0.809

S2.5.2 Number of epochs

Using a batch size of 16, we next examined the effect of the number of training epochs (Table 
S14 ). While the train errors generally improved with increasing number of epochs, the 
prediction errors do not. This is especially so for the force errors, which become much poorer 
in test sets E5 and E7, for example, with an increasing number of epochs, indicating overfitting 
of the models.

Table S14 Screening of the max epochs hyperparameter for ANI. Energy per atom and force RMSEs 
are provided for ANI potentials trained on T1 and tested on E1 and E3–7. The selected hyperparameter 
value is highlighted with bold blue font. See Table S1 for definitions of the datasets.

ANI potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Max 
Epochs T1 E1 E3 E4 E5 E6 E7

1000 1.15 1.15 1.47 1.47 1.89 1.29 1.03
2000 0.85 1.00 6.58 1.29 3.15 0.74 3.65
5000 0.43 9.54 5.87 4.26 1.16 4.16 13.80
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Force RMSEs / eV Å-1

1000 0.182 0.183 0.304 0.176 0.331 0.183 0.334
2000 0.394 0.408 2.300 0.402 1.670 0.435 2.320
5000 0.108 3.740 5.740 2.200 0.176 3.630 6.830

S2.5.3 Weight decay

Weight decay is a regularisation technique to reduce the complexity of the fitting function by 
adding a term that penalises the complex functions to the overall cost function. The complexity 
of a function 𝑓(𝐱)=𝐰⊤𝐱 can be measured by some norm of its weight vector, e.g., ‖𝐰‖2. Thus, 
one can add the norm of the weight vector to the cost function for overall minimization:

.

By doing so, we have replaced the original goal of minimising the prediction loss on the 
training dataset, with new goal of minimising the sum of prediction loss and the penalty term. 
Now, if the weight vector becomes too large, i.e., the fitting function becomes too complex, 
then the ML algorithm will minimise the weight norm ‖𝐰‖2 (decrease function complexity), 
rather than minimising the training error.

In addition to the original weight decay value of 1×10-4, we further tested a range of different 
values (Table S15 ). The errors for energy per atom and forces are similar across all weight 
decay values, indicating that weight decay does not have a significant effect on the quality of 
the trained ANI potential.

Table S15 Screening of the weight decay hyperparameter for ANI. Energy per atom and force RMSEs 
are provided for ANI potentials trained on T1 and tested on E1 and E3–7. The selected hyperparameter 
value is highlighted with bold blue font. See Table S1 for definitions of the datasets.

ANI potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Decay T1 E1 E3 E4 E5 E6 E7
0 1.76 1.79 3.10 1.73 3.00 1.28 2.77

1×10-4 1.15 1.15 1.47 1.47 1.89 1.29 1.03
1×10-3 1.96 1.97 6.20 1.59 5.99 0.96 6.09
1×10-2 1.38 1.57 7.17 1.82 6.99 0.90 7.23
1×10-1 1.26 1.39 7.94 1.84 8.00 1.05 8.07

Force RMSEs / eV Å-1

0 0.251 0.252 1.480 0.244 0.811 0.347 2.090
1×10-4 0.182 0.183 0.304 0.176 0.331 0.183 0.334
1×10-3 0.422 0.424 0.929 0.420 0.929 0.434 0.825
1×10-2 0.499 0.529 0.761 0.496 1.150 0.584 0.868
1×10-1 0.464 0.465 0.544 0.469 0.532 0.485 0.556
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S2.5.4 Dropout rate

Applying dropout in a NN ML model involves randomly choosing a neuron and then leave it 
out of training, ignoring both the inputs and outputs at that neuron. When a dropout is applied, 
other neurons have to take the missing neuron’s place to learn the representations of the system. 
This gives multiple independent internal representations learned by a collection of ‘trimmed’ 
networks. In doing so, the network becomes less sensitive to the weights of a particular neuron 
or group of neurons, allowing it to better generalise and avoid overfitting.

Using a batch size of 16 and 1000 training epochs, we examined the effect of the different 
dropout rates (Table S16 ). With increasing dropout rate, the errors for energy per atom and 
forces become worse, indicating that dropout does not help to improve the ANI potential. 

Table S16 Screening of the dropout hyperparameter for ANI. Energy per atom and force RMSEs are 
provided for ANI potentials trained on T1 and tested on E1 and E3–7. The selected hyperparameter 
value is highlighted with bold blue font. See Table S1 for definitions of the datasets.

ANI potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Dropout T1 E1 E3 E4 E5 E6 E7
0.0 1.15 1.15 1.47 1.47 1.89 1.29 1.03
0.1 1.31 1.35 6.48 1.53 6.80 0.77 6.70
0.5 1.73 1.98 16.10 2.50 16.90 1.42 15.50
0.8 1.87 1.95 23.30 2.91 23.10 1.20 23.20

Force RMSEs / eV Å-1

0.0 0.182 0.183 0.304 0.176 0.331 0.183 0.334
0.1 0.471 0.474 0.826 0.478 1.610 0.498 0.680
0.5 1.020 0.967 2.610 0.628 3.330 0.654 2.980
0.8 0.659 0.675 1.060 0.679 1.020 0.708 1.060

S2.5.5 Replicate training with optimized hyperparameters 

Table S17 Energy per atom and force RMSEs for ANI potentials trained on T1 dataset at three 
independent runs with optimized hyperparameters and tested on E1 and E3–7. Average and standard 
errors of the three runs are also given. See Table S1 for definitions of the datasets.

ANI potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

Run T1 E1 E3 E4 E5 E6 E7
1 1.15 1.15 1.47 1.47 1.89 1.29 1.03
2 1.74 1.80 1.42 1.37 2.17 0.98 1.24
3 1.97 2.01 1.36 2.29 1.79 1.98 0.95

Average 1.62 1.65 1.41 1.71 1.95 1.42 1.07
Std. Err. 0.25 0.26 0.03 0.29 0.11 0.29 0.09

Force RMSEs / eV Å-1

1 0.182 0.183 0.304 0.176 0.331 0.183 0.334
2 0.247 0.246 0.420 0.243 1.270 0.418 0.890
3 0.194 0.197 0.318 0.187 0.339 0.195 0.329

Average 0.208 0.209 0.348 0.202 0.647 0.265 0.518
Std. Err. 0.020 0.019 0.037 0.021 0.312 0.076 0.186
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To summarize, the best set of optimized hyperparameters is a batch size of 16, training epochs 
of 1000, dropout rate of 0.0, initial learning rate of 1×10-4, early stopping learning rate of 
1×10-5, and a weight decay of 1×10-4. Using these optimized hyperparameters, we 
independently trained three separate ANI potentials to obtain the averaged errors (Table S17). 

S2.5.6 ANI training using larger training dataset T2 (2400 datapoints)

With the best set of hyperparameters from tuning ANI training using T1 dataset, we assessed 
the performance of ANI potential from using T2 dataset as train set. The effect of batch sizes 
was assessed again, due to the different number of datapoints used in training (Table S18 ). A 
batch size of 32 and 64 produces the best energy per atom errors and a batch size of 64 produces 
the best force errors. Three replicates for a batch size of 64 were run to obtain the averaged 
errors (Table S19 ). 

Table S18 Screening of the batch size hyperparameter for ANI. Energy per atom and force RMSEs are 
provided for ANI potentials trained on T2 and tested on E2–7. The selected hyperparameter value is 
highlighted with bold blue font. See Table S1 for definitions of the datasets.

ANI potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

Batch Size T2 E2 E3 E4 E5 E6 E7
16 0.97 1.02 1390.00 1.34 382.00 0.80 267.00
32 1.29 1.28 3.41 1.34 9.06 0.97 3.93
64 2.21 2.18 5.33 1.54 5.39 0.95 5.35
128 1.53 1.55 10.60 2.02 10.30 1.21 10.80

Force RMSEs / eV Å-1

16 0.416 1.110 685.000 0.398 279.000 0.424 388.000
32 0.307 0.382 3.090 0.297 3.130 0.308 3.900
64 0.381 0.380 0.505 0.379 0.499 0.394 0.514
128 0.575 0.575 0.776 0.575 0.767 0.599 0.795

Table S19 Energy per atom and force RMSEs for ANI potentials trained on T2 dataset at three 
independent runs with optimized hyperparameters and tested on E2–7. Average and standard errors of 
the three runs are also given. See Table S1 for definitions of the datasets.

ANI potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

Run T2 E2 E3 E4 E5 E6 E7
1 2.21 2.18 5.33 1.54 5.39 0.95 5.35
2 1.27 1.23 1.45 1.55 1.94 1.07 1.17
3 1.13 1.20 6.57 1.35 6.66 0.80 6.51

Average 1.54 1.53 4.45 1.48 4.66 0.94 4.34
Std. Err. 0.34 0.32 1.54 0.07 1.41 0.08 1.62

Force RMSEs / eV Å-1

1 0.381 0.380 0.505 0.379 0.499 0.394 0.514
2 0.317 0.317 0.392 0.300 0.395 0.310 0.481
3 0.427 0.448 0.718 0.417 0.705 0.435 0.838

Average 0.375 0.382 0.539 0.365 0.533 0.380 0.611
Std. Err. 0.032 0.038 0.096 0.035 0.091 0.037 0.114
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S2.6 Comparison of MTP, Schnet, and ANI performance
Here, we compare the performance results of the three MLIPs after hyperparameter tuning 
(Table S20 ). Each MLIP was trained three times separately on T1 and T2. MTP performs the 
best out of the three MLIPs for both datasets.

Table S20 Energy per atom and force RMSEs for MTP, Schnet and ANI potentials with optimized 
hyperparameters (top) trained on T1 and tested on E1 and E3–7, and (bottom) trained on T2 datasets 
and tested on E2–7. Three independent runs were conducted for each potential for each training set. 
Average and standard errors of the three runs are also given. See Table S1 for definitions of the datasets.

ML potential trained on T1 (800 datapoints)
Energy per atom RMSEs / meV

ML Model T1 E1 E3 E4 E5 E6 E7

MTP 0.27 ± 
0.01

0.27 ± 
0.00

0.34 ± 
0.17

0.36 ± 
0.01

0.64 ± 
0.03

0.22 ± 
0.01

0.47 ± 
0.05

Schnet 0.74 ± 
0.02

1.21 ± 
0.02

11.40 ± 
0.29

5.35 ± 
0.40

10.10 ± 
0.80

2.66 ± 
1.02

9.23 ± 
2.13

ANI 1.62 ± 
0.25

1.65 ± 
0.26

1.41 ± 
0.03

1.71 ± 
0.29

1.95 ± 
0.11

1.42 ± 
0.29

1.07 ± 
0.09

Force RMSEs / eV Å-1

MTP 0.045 ± 
0.000

0.045 ± 
0.000

0.053 ± 
0.001

0.040 ± 
0.000

0.052 ± 
0.001

0.042 ± 
0.000

0.054 ± 
0.001

Schnet 0.289 ± 
0.002

0.299 ± 
0.001

0.375 ± 
0.003

0.322 ± 
0.001

0.395 ± 
0.003

0.278 ± 
0.000

0.365 ± 
0.004

ANI 0.208 ± 
0.020

0.209 ± 
0.019

0.348 ± 
0.037

0.202 ± 
0.021

0.647 ± 
0.312

0.265 ± 
0.076

0.518 ± 
0.186

ML potential trained on T2 (2400 datapoints)
Energy per atom RMSEs / meV

ML Model T2 E2 E3 E4 E5 E6 E7

MTP 0.30 ± 
0.01

0.31 ± 
0.01 

0.63 ± 
0.07

0.39 ± 
0.01

0.69 ± 
0.05

0.16 ± 
0.08

0.49 ± 
0.08

Schnet 0.66 ± 
0.03

0.95 ± 
0.02

12.60 ± 
0.08

6.28 ± 
0.32

10.00 ± 
0.79

2.87 ± 
0.71

10.20 ± 
1.31

ANI 1.54 ± 
0.34

1.53 ± 
0.32

4.45 ± 
1.54

1.48 ± 
0.07

4.66 ± 
1.41

0.94 ± 
0.08

4.34 ± 
1.62

Force RMSEs / eV Å-1

MTP 0.050 ± 
0.002

0.050 ± 
0.002

0.060 ± 
0.002

0.045± 
0.001

0.059 ± 
0.002

0.047 ± 
0.001

0.061 ± 
0.003

Schnet 0.296 ± 
0.001

0.301 ± 
0.001

0.377 ± 
0.002

0.323 ± 
0.001

0.398 ± 
0.002

0.281 ± 
0.002

0.378 ± 
0.012

ANI 0.375 ± 
0.032

0.382 ± 
0.038

0.539 ± 
0.096

0.365 ± 
0.035

0.533 ± 
0.091

0.380 ± 
0.037

0.611 ± 
0.114

In Figure S2, we plot the energy and force errors for using the training results from the three 
replicate runs. We did not observe any significant improvement in the performance of ANI and 
Schnet by using a larger T2 training set of 2400 datapoints, as compared with the smaller T1 
training set of 800 datapoints. This potentially results from the fact that the configurations from 
T2 may be similar to those in T1, which results from taking every 3rd point of T2. Training 
sets with more structurally diverse configurations, which are correspondingly most costly to 
generate, might therefore be necessary to improve the performance of ANI and Schnet. 
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Figure S2 Train and test errors for MTP, Schnet, and ANI trained potentials using the larger dataset T2 
with individually-optimized hyperparameters. (a) Root mean square errors (RMSEs) of the energy per 
atom. (b) RMSEs of the force components. Error bars represent standard errors of each ML potential 
from triplicate runs. The training set (T2) consists of configurations of 100 H2O molecules at 300 K, 
whereas the test sets (E2–E7) consist of configurations with varying number of H2O molecules (100, 
60 and 200) at different temperatures (300 K and 473 K), to probe extrapolation ability (see Table S1 
for details of each training and test set). Pale horizontal bars across all panels indicate the test set errors 
to aid comparison.
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S3. Determining the threshold MV grade, γthres  

The MV grade,  is related to the condition number of the training matrix, and therefore 𝛾,

predicts the degree of extrapolation of a configuration compared with the configurations in the 
training set.17 In our active-learning MLaMD simulations, we constantly monitor the value of 
 for configurations encountered in the simulations to determine if they should be selected for 𝛾

training. While a constant threshold of 2 <  < 10 is typically used for this purpose15, in this 𝛾𝑡ℎ𝑟𝑒𝑠

work we use an adaptive method for determining . Specifically, we define  as follows:𝛾𝑡ℎ𝑟𝑒𝑠 𝛾𝑡ℎ𝑟𝑒𝑠

𝛾𝑡ℎ𝑟𝑒𝑠 = 𝑚𝑖𝑛(3𝜎𝛾 +  �̅�, 𝛾𝐷𝐹𝑇),

where  is the average  over the past n evaluations of ,  is the standard deviation of the past �̅� 𝛾 𝛾 𝜎𝛾

n evaluations, and  is the  of the last DFT-evaluated configuration. 𝛾𝐷𝐹𝑇 𝛾

This adaptive method therefore checks for abnormally high  values out of the  values recently 𝛾 𝛾

obtained, which is indicative of an extrapolated configuration in the current region that the 
MLaMD simulation is exploring. Yet, the MV grade is not allowed to be greater than that of 
the last DFT evaluated configuration, which prevents  from increasing without bound. 𝛾𝑡ℎ𝑟𝑒𝑠

The main advantage of this scheme is to increase the efficiency of active learning MLaMD 
simulations by reducing the number of false positives: configurations with   but yet 𝛾 > 𝛾𝑡ℎ𝑟𝑒𝑠

having low DFT errors. Such false positives may occur as  does not correlate perfectly with 𝛾

DFT errors. For example, it is empirically found that a configuration with a force error of 0.3 
eV Å-1 could have a  between 2–15.17 A too low fixed value of   may therefore catch too 𝛾 𝛾𝑡ℎ𝑟𝑒𝑠

many false positives, whereas a too high fixed value of  may lead to an inaccurate 𝛾𝑡ℎ𝑟𝑒𝑠

simulation. An adaptive threshold assumes that the correlation between  and DFT errors is 𝛾

better when considering configurations similar to each other. Our scheme therefore attempts to 
set  appropriately based on the region of configuration space the MLaMD simulation is 𝛾𝑡ℎ𝑟𝑒𝑠

in, so as to only trigger DFT evaluations when absolutely necessary.

Crucially, we note that this adaptive threshold does not significantly affect the accuracy of our 
MLaMD simulations, as noted by their low errors with respect to ab initio calculations (Section 
S3).
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S4. Accuracy of MLaMD Simulations for Heterogeneous Catalysts

In this section, we assess the accuracy of our MLaMD simulations for predicting adsorption 
energies at water-metal interfaces. We had showcased the adsorption of CO* and OH* on 
Cu(111) in the main text; to test the ability of our method to extend to different facets and a 
wider range of adsorbates, we additionally performed simulations of 5 more adsorbates—
namely OH*, CO*, COH*, HCO*, and OCCHO*—over solvated Cu(211) (Figure S3). The 
Cu(211) slabs were modelled as 3×1 unit cells with 12 layers, with the bottom 6 layers fixed at 
their optimized bulk lattice constants of 3.57 Å for Cu (experimental18: 3.61). The Brillouin 
zone was sampled by a Generalized Regular grid with 4 irreducible and 9 reducible k-points, 
as generated by the autoGR package.19 All other calculation parameters are the same as for the 

Cu(111) slabs (see Methods section in the main text). 

Figure S3 Top view atomic illustrations of various adsorbates on explicitly solvated Cu(211). 
Structures were sampled from MLaMD simulations. Water molecules are rendered in a licorice 
representation, other atoms are represented as spheres. Dashed light green lines mark the (211) step 
edges. Color code: brown–Cu, red–O, white–H, grey–C, cyan–O atoms of adsorbates, yellow–H atom 
of OH.

To holistically assess the accuracy of the MLaMD simulations for all 7 systems (2 adsorbates 
on Cu(111) + 5 adsorbates on Cu(211)), we performed three types of analyses, as elaborated 
in more detail in the subsections below

S4.1 Ab initio Evaluation of Sampled Configurations from MLaMD Trajectories
We sampled the 8 production simulations of a MLaMD workflow (Figure S6) at intervals of 
25 ps each, creating a test set of 160 configurations for each system. Single point calculations 
were then performed to obtain the DFT energies and forces of each configuration, which were 
compared with the energies and forces obtained from MLaMD simulations. The energetic and 
force RMSEs and MAEs are shown in Figure S4 and Figure S5, respectively, and are also 
tabulated in Table S21. This test makes sure that accurate energies can be obtained throughout 
the entire MLaMD simulation, which is crucial since the trajectory consists of predictions from 
multiple trained MTP models due to the active learning process wherein the MTP is retrained 
upon introduction of new data.

Encouragingly, we find good agreement of the MLaMD energies and forces (RMSEs of ~1 
meV atom-1) and forces (RMSEs of ~0.06 eV Å) with the single point DFT calculations. This 
indicates that the MLaMD simulations are of similar accuracy as AIMD simulations, and that 
the MLIPs were able to fit the training configurations well without overfitting.
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Figure S4 Normalized histograms of energetic errors in MLaMD simulations of solvated adsorbates on 
Cu(111) and Cu(211) surfaces as compared with single point ab initio calculations. For each system, 
160 configurations were obtained by taking 20 samples at 25 ps intervals from each of the eight 500 ps 
replicas in the production runs of a single MLaMD workflow (Figure S6). The MLaMD per atom 
energies (EML) were then compared with those from the ab initio calculations (EDFT) to obtain the 
histograms for each system. MAEs and RMSEs for each system are provided. 



22

Figure S5 Normalized histograms of force component errors in MLaMD simulations of adsorbates on 
Cu(111) and Cu(211) surfaces as compared with single point ab initio calculations. For each system, 
160 configurations were obtained by taking 20 samples at 25 ps intervals from each of the eight 500 ps 
replicas in the production runs of a single MLaMD workflow (Figure S6). The MLaMD force 
components (FML) were then compared with those from the ab initio calculations (FDFT) to obtain the 
histograms for each system. MAEs and RMSEs for each system are provided.
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Table S21 Energy per atom and force root mean square errors (RMSEs) and mean absolute errors 
(MAEs) for MLaMD simulations of adsorbates on Cu(111) and Cu(211) surfaces. For each system, 
160 configurations were obtained by taking 20 samples at 25 ps intervals from each of the eight 500 
ps replicas in the production runs of a single MLaMD workflow (Figure S6). Histograms of the 
energetic and force errors are given in Figure S4 and Figure S5, respectively.

Energies Forces
Adsorbate RMSE / 

meV atom-1
MAE / 

meV atom-1
RMSE / 
eV Å-1

MAE / 
eV Å-1

Cu(111)
Clean 1.10 0.87 0.061 0.041
CO* 1.16 0.77 0.059 0.040
OH* 1.24 0.94 0.060 0.041
Cu(211)
Clean 0.87 0.59 0.049 0.032
CO* 1.14 0.80 0.056 0.038
COH* 0.88 0.61 0.054 0.037
HCO* 0.76 0.59 0.056 0.037
OCCHO* 1.01 0.75 0.072 0.043
OH* 0.74 0.52 0.051 0.035

S4.2 MTP Training Errors 
We additionally directly evaluated the ability of the MTP model to fit the configurations 
encountered in the MLaMD simulations by collating the training errors with the training set 
built up from the active learning in the MLaMD simulations (Table S22).

Table S22 MTP training set energy and force root mean square errors (RMSEs) and mean absolute 
errors (MAEs) of the last trained potential for MLaMD simulations of adsorbates on Cu(111) and 
Cu(211) surfaces. Values shown are for one of the three workflow replicates conducted for each system. 
The number of training set configurations is also provided.

Energies Forces
Adsorbate

Number of 
Training 

Configurations
RMSE / 

meV atom-1
MAE / 

meV atom-1
RMSE / 
eV Å-1

MAE / 
eV Å-1

Cu(111)
Clean 392 0.88 0.61 0.071 0.046
CO* 525 0.72 0.55 0.062 0.042
OH* 322 0.70 0.55 0.062 0.042
Cu(211)
Clean 353 0.55 0.42 0.056 0.037
CO* 561 0.66 0.50 0.064 0.041
COH* 556 0.62 0.46 0.061 0.041
HCO* 588 0.65 0.50 0.066 0.042
OCCHO* 660 0.79 0.62 0.083 0.048
OH* 439 0.63 0.47 0.062 0.041

We again find good agreement of the DFT energies and forces with the MTP predicted energies 
(RMSEs of ~0.8 meV atom-1) and forces (RMSEs of ~0.06 eV Å-1. This indicates that MTP is 
flexible enough to accurately fit the wide range of configurations encountered in our entire 
simulation.



24

S4.3 Comparison of Catalytic Quantities with the Literature 
Lastly, we compared the predictions from our MLaMD simulations with those from the 
literature, specifically, from AIMD simulations in the excellent work by Heenan et al.20 (Table 
S23). Two key quantities were compared: (1) adsorption energies, and (2) the number of 
hydrogen bonds formed with the adsorbate.

Table S23 Comparison of key properties predicted by MLaMD versus AIMD simulations (ref. 20), 
including adsorption energies and the number of hydrogen bonds formed. For the literature values, 
uncertainties for the adsorption energies are standard errors over n runs, whereas uncertainties for the 
number of hydrogen bonds formed are standard deviations over n runs. For the MLaMD simulations, 
uncertainties for adsorption energies are the standard errors of the difference between the mean energies 
of the clean and adsorbate+slab simulations with n runs each (note that uncertainties for the gas-phase 
adsorbate simulations are negligible), whereas the uncertainties for the number of hydrogen bonds 
formed are standard deviations over n runs. n=3 for the MLaMD values (i.e., 3 MLaMD workflow 
replicates), and n=4 for the literature values (i.e., 4 AIMD simulations).

Adsorption
 Energies / eV

Number of Hydrogen Bonds 
FormedSystem

MLaMD Literature MLaMD Literature
Cu(111)
CO* –0.62 ± 0.09 –0.77 ± 0.06 0.20 ± 0.08 0.32 ± 0.03
OH* –0.45 ± 0.11 –0.11 ± 0.05 2.88 ± 0.06 2.39 ± 0.10
Cu(211)
CO* –0.67 ± 0.20 –0.69 ± 0.05 0.14 ± 0.04 0.28 ± 0.05
COH*   0.05 ± 0.21   0.31 ± 0.05 1.38 ± 0.12 1.77 ± 0.27
HCO* –0.25 ± 0.21 –0.35 ± 0.05 1.38 ± 0.17 1.16 ± 0.13
OCCHO* –0.65 ± 0.15 –0.99 ± 0.08 3.14 ± 0.11 2.98 ± 0.67
OH* –0.67 ± 0.19 –0.29 ± 0.03 1.87 ± 0.09 2.04 ± 0.21

We find generally good agreement in both quantities for all adsorbates on both Cu(211) and 
Cu(111). One notable exception is OH*, for which the difference in adsorption energies 
predicted from the MLaMD and literature are 0.34 and 0.38 eV on Cu(111) and Cu(211), 
respectively. As discussed in detail in Section 2.3.2 of the main text, the MLaMD simulations 
predict stronger binding of OH* due to better sampling of the configurational space. This leads 
to lower energy states being accessed in the longer timescales of the MLaMD simulations (500 
ps), as compared with the shorter timescales of the AIMD simulations (~30 ps). OH* is more 
affected than other adsorbates due to its strong hydrogen bonding network, which leads to 
lower mobility of water20 and therefore slower energetic convergence. 

Another noticeable discrepancy is for OCCHO*/Cu(211), where there is a 0.34 eV difference 
between the MLaMD and AIMD simulations. We believe that this difference is again due to 
the better sampling of our MLaMD simulations. As seen in Figure S10, Cu(211) systems in 
general exhibit behaviour similar to the OH*/Cu(111) system, with water restructuring events 
occurring at long simulation times. The Cu(211) systems therefore show slower energetic 
convergence than the Cu(111) systems (Figure S9). This slower convergence is due to the small 
Cu(211) unit cell used, which is especially narrow in the x-direction (6.18 Å × 10.09 Å). The 
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small unit cell hinders the mobility of water, as the flexibility of water structures is reduced as 
a result of the artificially enforced periodicity of the simulations.21 

The longer timescales and increased number of replicas for our MLaMD simulations (8 replicas 
per MLaMD bundle) provide better sampling than the AIMD simulations (4 replicas) and are 
therefore more accurate estimates of the adsorption energies. The discrepancy of 0.34 eV is 
also within the range of energies of individual simulations, which are around 0.5 eV for both 
the MLaMD simulations (Figure S10) and the AIMD simulations by Heenan et al.20 This is 
consistent with our hypothesis that the discrepancy may be caused by the AIMD simulations 
having poorer sampling and averaging over fewer replicas.
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S5. Other Supplementary Figures

Figure S6 Scheme of workflows for calculating (a) binding energies and (b) free energy surfaces using 
MLaMD simulations. See Methods Section in main text for more detailed descriptions of each 
procedure. 
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Figure S7 Evolution of the energetics of MLaMD trajectories versus time for clean Cu(111), 
OH*/Cu(111) and CO*/Cu(111). (left) Cumulative average of the energies. (right) Moving average of 
the energies with a window of 10 ps. Red lines indicate the energies whereas blue bars indicate error 
bars across 8 replicas. Energies are binding energies with respect to Cu(111), CO(g), H2O(g), and H2(g), 
where “(g)” indicates a gas-phase species. Times are zeroed to t0=10 ps, which is the initial discarded 
portion of the trajectory.
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Figure S8 Probability density of watA and watB molecules in the xy-plane (i.e., top view of the 
system) within 4.6 Å of the Cu(111) surface. Small green circles and dashed black lines mark the 
positions of the Cu atoms and the unit cell, respectively.
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Figure S9 Evolution of MLaMD simulations versus time for Cu(111) systems. (top) Moving average 
of binding energies smoothed over a window of 10 ps. Binding energies are with respect to clean 
Cu(111), CO(g), H2O(g), and H2(g), where “(g)” indicates a gas-phase species. (middle) Moving 
average of the energy autocorrelation function smoothed over a window of 30 ps. (bottom) Moving 
average of ζ smoothed over a window of 30 ps. The simulation time, t, is zeroed to t0=10 ps, which is 
the initial discarded portion of the trajectory. All 8 runs of the MLaMD bundle are shown.
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Figure S10 Evolution of MLaMD simulations versus time for Cu(211) systems. (top) Moving average of binding energies smoothed over a window of 10 ps. 
Binding energies are with respect to clean Cu(111), CO(g), H2O(g), and H2(g), where “(g)” indicates a gas-phase species. (middle) Moving average of the 
energy autocorrelation function smoothed over a window of 30 ps. (bottom) Moving average of ζ smoothed over a window of 30 ps. The simulation time, t, is 
zeroed to t0=10 ps, which is the initial discarded portion of the trajectory. All 8 runs of the MLaMD bundle are shown.
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Figure S11 Side view of the hydrogen bonding between the first and second water layer on clean 
Cu(111). Blue and green dotted lines mark the donation and acceptance of hydrogen bonding, 
respectively, by the first water layer from the second water layer. Solid black lines mark the unit cell. 
Color code: brown–Cu, red–O, white–H, grey–C, cyan–O atoms of adsorbates, yellow–H atom of OH.
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S6. Other Supplementary Tables

Table S24 Calculation of the speed up of MLaMD simulations as compared with AIMD simulations 
for adsorption energy calculations over solvated Cu(111). One full workflow for calculating a binding 
energy consists of two equilibration bundles of 8 MD replicates each, and one production bundle with 
8 MD replicates (see Figure S6 and Methods in main text for more details). The speed up is calculated 
as the number of DFT calculations required for each MLaMD workflow divided by the 12,000,000 
timesteps involved for an entire workflow (1,500,000 per replicate, 8 replicates each).

Number of DFT calculations

System Equilibration 
Bundle 1

Equilibration 
Bundle 2

Production 
Bundle

Speed-Up 

Clean Cu(111)
Workflow 1 194 287 134 19512
Workflow 2 192 226 136 21660
Workflow 3 200 189 119 23622
CO*/Cu(111)
Workflow 1 269 317 182 15625
Workflow 2 230 246 187 18100
Workflow 3 281 371 170 14599
OH*/Cu(111)
Workflow 1 243 237 126 19802
Workflow 2 205 329 144 17699
Workflow 3 246 221 128 20168
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Table S25 DFT-calculated static binding energies of OH* on different sites of Cu(111) in vacuum. 
“#” indicates unstable binding on the site, energies were then obtained by constraining the x- and y-
coordinates of the O atom of OH* at the site.

Binding Energy /eV
Hollow (fcc) Bridge Top

OH* 0.09 0.16# 0.55#
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