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Computational Section

1 Density functional theory (DFT) calculations

Given the two unpaired electrons from the two Cu(Il) centers, the complex’s ground
state can be a closed-shell singlet, an open-shell singlet or a triplet. In the closed-shell
singlet, the two electrons are paired and occupy same spatial distribution; in the open-
shell singlet, the two unpaired electrons have different spatial distributions and exhibit
opposite spins; and in the triplet, the two unpaired electrons have parallel spins, with

different spatial distributions.

1.1 Benchmarking studies

To determine the ground state of the DNA—catalyst systems, benchmark calculations
were performed on one structure each from the adjacent and intervening species.
Geometries of the example systems were optimized at GFN2-xTB'>"'7 level of theory
with crude optimization settings, applying the implicit ALPB solvation model with
water to mimic the aqueous experimental environment. Both of the example systems
were optimized separately in the closed-shell singlet and open-hell triplet states. The
open-shell singlet optimization in XTB could not be done as spin-polarized calculation
and implicit solvation model are not compatible in the xXTB program.

The xTB-optimized structures were subjected to single-point energy calculations
using density functional theory (DFT), which were performed using the Gaussian 16
rev. B.01 program.'® Two levels of theory were performed on the single point (SP)
DFT energy calculations: (i) the BP86 functional'® ?° with Grimme’s D3 dispersion
correction’! with Becke-Johnson damping®**> and the 6-311+G(d) basis set*® for all
atoms (denoted as BP86-D3BJ/6-311+G(d)), and (i) the global-hybrid meta-NGA
(nonseparable gradient approximations) MN15 functional®” with the def2-SVP basis
set (denoted as MN15/def2-SVP) for all atoms. Due to some convergence failures in
BP86-D3BJ/6-311+G(d), the MNI15 functional was selected for its robust
performance for transition metal-containing systems®-°. The implicit SMD

13° was used to account for the solvent effect of water in all

continuum solvation mode
DFT calculations.

Consequently, the closed-shell singlet, symmetry-broken open-shell singlet and triplet
states of example systems were calculated at MN15/def2-SVP level on each xTB-
optimized structure. It was found that for the example adjacent system, the open-shell

singlet gave the lowest energy, while the triplet and closed-shell singlet were 28.3
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kcal/mol and 44.4 kcal/mol higher in energy, respectively. For the example
intervening system, the most stable state was also the open-shell singlet, while the
triplet and closed-shell singlet were 0.0 kcal/mol (isoenergetic) and 41.0 kcal/mol
higher. The near-degeneracy between open-shell singlet and triplet in the intervening
system is likely due to the long Cu—Cu distance, resulting in weak orbital overlap and
small exchange interaction and thus a small singlet-triplet energy gap. These results
indicate that the open-shell singlet represents the ground state, which is consistent

with the previous literatures on Cu(Il) biradical systems?’- %,

1.2 Production-level calculations

Based on the preliminary benchmarking calculations, the single point energies for all
DNA-—catalyst systems were computed at open-shell singlet with
SMD(water)UMN15/def2-SVP level of theory, on xXTB-optimized geometries with 2
unpaired electrons. The energies are given in kcal/mol and used for discussion

throughout. All molecular structures were visualized using PyMOL software’®.

2 Model reaction

The model reaction used for the computational study, with the (truncated) optimized
DNA sequences, is shown in Figure S4. To accommodate the additional positive
charges, three POs closest to the active sites were deprotonated such that the full
system has overall neutral charge. For computational convenience, the “hairpin” loops
were excluded from the models, i.e., only the first seven or eight nucleotide units

(including bases, sugars, and phosphates) were included in models (Figure S4b).

(a) Cu(NO3), (7.5 mol%) o

o)
AP-DNA-L (5 mol%) . %, N %
)J\/Me B — «\Hklm \7/ Im
Im MOPS (20 mM, pH 7) M \_N
5°C,36 h € Nipr
1c 2c 3a
(b) for adjacent species for intervening species
5' 5'
CGGLLGAGGA CGTLCLTAGGA
4G CETTETICA 4y G CATGTATICA

Figure S4. (a) Model reaction used in computational modelling. (b) The DNA
sequences of adjacent species (left) and intervening species (right).
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3 Naming conventions

. . facing minor groove
facing minor groove

facing major groove facing major groove
R'=Bu, R2= ¥ e A B c D
R'=Pr,R2= ¥ Me IS B c o

facing major groove o0-AA' o-AC* 0-CA' o-CC’

facing minor groove o0-BB’ o-BD' o0-DB’ o0-DD’

facing major groove o-A'A o-A'C o-C'A o-C'C
facing minor groove o-B'B o-B'D o-D'B o-D'D
flip to opposite side flip to same side
ro N
N o
: -
/O

non-overlapping overlapping

Figure S5. Naming conventions used in computational modelling. For each case, e.g.,
AA’, both overlapping and non-overlapping cases are possible (shown here only
overlapping-AA’, which we denote as 0-AA”’)
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We orientate the system with the catalyst-conjugated DNA strand running from the
5’-end to the 3’-end on the left. As shown in Figure S5, each system has a name
consisting of two capital letters, where the first letter representing the configuration of
the fisrt bpy-Cu(Il) complex counting from the 5’-end, and the second letter
representing the next bpy-Cu(Il) complex. The structures are named in such a way
(Figure S5) that structures where the imidazole group and the 4-methylpyridine are in
a cis relationship will be A or B, depending on their orientation towards the DNA
groove: if the N (of bpy) atoms face the major groove, it will be A; if minor groove, it
will be B. Similarly, structures where the imidazole group and the 4-methylpyridine
are in a trans relationship will be C or D: C for major groove and D for minor groove.
For bpy-Cu(Il)-1¢, unprimed labels (A to D) are used and for bpy-Cu(Il)-2¢, primed
lables are used (A’ to D).

For all species, combinations of A (or A’) with D (or D’), and B (or B’) with C (or
C’), are not considered, as the likelihood of reaction is minimal when the two bpy-
Cu(Il) complexes are oriented in opposite directions in those configurations (catalyst-
bound substrates point to different grooves). For both of the adjacent species and
intervening species, we no longer consider “out states”, in which the catalysts remain
outside of DNA and the opposite base remains inside the duplex, as their energies are
much higher than “in states”, where the bpy-conjugated catalyst system tucks inside
the dna double helix. When both complexes are oriented toward the major groove, the
species are classified as overlapping or non-overlapping depending on the relative
orientation of the two ligands (can be determined based on whether the methyl groups
on the ligands are positioned on the same side). The overlapping orientation denotes
methyl groups on the same side, that they are “overlapping” when viewed along DNA
pore top-down, whereas the non-overlapping orientation implies that the methyl
groups are not overlapped when viewed along the DNA pore. In contrast, when
oriented toward the minor groove, only the overlapping configuration is possible as
non-overlapping would face undue steric hindrance.

For example, overlapping-AC’, which we short-formed as 0-AC’ (similarly for all
subsequent namings), designates a structure in which (i) both bpy-Cu(Il) complexes
face the major groove (A and C’) and have same orientation (overlapping methyl
groups on ligands); (i1) the ligand arrangement is A for bpy-Cu(Il)-1¢ and C’ for bpy-
Cu(Il) -2¢; (ii1) bpy-Cu(Il)-1¢ is nearer the 5" end than bpy-Cu(Il)-2¢ (A before C’).

All combinations of the orientations were explored during the modelling process.
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3.1 Adjacent species

The GFN2-xTB-optimized reactant states of the DNA model system used for the
reaction are shown in Figure S6, in which the distance between two reaction sites are
shown. For structures where a reaction is likely to happen, they were subjected to
DFT energy calculations and comparison. The most stable structure is set to be the
zero-energy reference. It was found that (1) compared to the distance between two
reaction sites, an overlapping- or non-overlapping- orientation (i.e., whether the
methyl groups on the ligands are positioned on the same side) has a more significant
impact on energies, likely due to reduced sterics; (2) for overlapping species,
structures in which the bpy-Cu(Il) complexes share the same configuration (e.g., o-
AA’; 0-A’A, 0-BB’, 0-B’B, 0-CC’, 0-CC’, 0-DD’, and 0-D’D) are typically more
favorable for reaction, likely due to effective n-n stacking interactions and favorable
geometries. In contrast, other configurations either exhibit higher energies or fail to
present a suitable arrangement of the reaction sites/reacting carbon positions. (3)
structure o-B’B exhibits the highest energy (41.5 kcal/mol) among all structures,
which can be a result from a combination of steric hindrance within the minor groove
and a mismatch between the size of the bpy-Cu(Il) complexes and the helical angle of
the DNA backbone; (4) structure 0o-DB’, although the two bpy-Cu(Il) complexes are
not fully aligned, still showed a shorter reaction distance than structure o-C’A. This is
likely because steric hindrance within the minor groove (o-DB’) distorts the geometry
sufficiently such that the reacting carbon atoms become closer in distance that those
within the major groove (0-C’A). Thus, despite closer distance between the reacting
carbon atoms, the energy may still be high due to strain and distortion of the catalyst
within the DNA. This leads to elevated energy (32.3 kcal/mol) as calculated. The
most stable structure is n-CC’, which will yield the (R,R)-product as observed

experimentally.
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0-AA’ n-AA’

AAE = 10.9 kcal/mol N/C

d=577A d=7.10A

0-AC’ n-AC’
AAE = 20.4 kcal/mol AAE = 10.2 kcal/mol
d=449 A d=6.50 A

. aae ‘ !_,Z 'l
¥ w'be,\ —
<I¥ )
/
0-A’A n-A’A
AAE = 1.42 kcal/mol N/C
d=631A d=28.76 A
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0-C’C
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Figure S6. GFN2-xTB-optimized reactant states of the reaction. Relative energy
values are given in kcal/mol with respect to the most stable complex. N/C denotes
“not calculated” due to the unfeasible geometrical arrangement for product formation.

3.2 Intervening species

The GFN2-xTB-optimized reactant states of the DNA model system used for the
reaction are shown in Figure S7, in which the distance between two reaction sites are
shown. Except for the non-productive structures caused by orientation, all other
structures were subjected to DFT energy calculations and comparison. The most
stable structure n-AA’ is set to be the zero-energy reference. It was found that (1) due
to steric hindrance caused by the DNA helical structure, when the complexes are
oriented toward the minor groove, the reactive sites cannot approach each other
effectively, only two cases are likely to react (n-DB’ and n-D’B); (2) in constrast to
the adjacent species, the structures in which the two bpy-Cu(Il) complexes are
oriented in the different direction (i.e., 0-AC’, 0-A’C, 0-DB’, 0-D’B, n-CA’ and n-
C’A) exhibited the shortest distances between reacting carbon atoms; (3) the most
stable n-AA’ structure yields a product with S-configurations at the reacting carbon
centers of 1c¢ and 2c¢ substrates, in contrast to the most stable n-CC’ structure from
adjacent species (which gives (R,R), section 3.1). This enantioselectivity aligns well

with the experimental results.

0-AA’ n-AA’
AAE = 19.7 kcal/mol AAE = 0.0 kcal/mol
d=6.57 A d=530A
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0-DB’

AAE = 10.9 kcal/mol

d=5.80A

,/ Y
0-D’B o-D’D
AAE = 56.0 kcal/mol N/C
d=557A d=11.13 A

Figure S7. GFN2-xTB-optimized reactant states of the reaction. Relative energy
values are given in kcal/mol with respect to the most stable complex. N/C denotes
“not calculated” due to the unfeasible geometrical arrangement for product formation.
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4 xTB-optimized structures

Geometries of all xTB-optimized structures (in .xyz format) are included in a folder
named final structures with an associated readme.txt file. All these data have been
uploaded to zenodo.org (https://zenodo.org/records/16626042) with  DOI:
10.5281/zenodo.16626042.
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