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8. DFT calculation
8.1 Computational Methods

The global hybrid DFT functional M06-2X3 was employed with the Karlsruhe-family 

double-ζ valence def2-SVP4,5  basis set for all atoms to model the catalytic mechanism 

of the present transformation. For the M06-2X/def-SVP gas phase optimized 

structures, single point (SP) corrections were performed using M06-2X functional and 

def2-TZVP4,5 basis set for all atoms to improve upon the accuracy of the calculated 

energy. For each of these SP calculations, the implicit SMD continuum solvation 

model6 for dimethyl sulfoxide (DMSO) solvent was used to account for the effect of 

solvent on the potential energy surface (PES). All these calculations were performed 

with Gaussian 16 rev. B.01 software.7

Gibbs energies were evaluated at room temperature (25 ºC), using Grimme’s 

scheme of quasi-RRHO treatment of vibrational entropies8, using the GoodVibes 

code9. Vibrational entropies of frequencies below 100 cm-1 were obtained according 

to a free rotor description, using a smooth damping function to interpolate between the 

two limiting descriptions. The free energies reported in Gaussian from gas-phase 

optimization were further corrected using standard concentration of 1 mol/L,10–12 which 

were used in solvation calculations, instead of the gas-phase 1atm used by default in 

Gaussian program. 
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8.2 DFT optimized structures

Geometries of all optimized structures (in xyz format with their associated energy in 

Hartrees) are included in a separate folder named DFT structures and uploaded to 

https://zenodo.org/uploads/11280484 (DOI: 10.5281/zenodo.11280484).

TS1 TS1’

ΔG‡ = 6.4 kcal mol-1 ΔG‡ = 10.8 kcal mol-1

TS2 TS2a

ΔG‡ = 16.2 kcal mol-1 ΔG‡ = 20.9 kcal mol-1
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TS2b TS2c

ΔG‡ = 22.3 kcal mol-1 ΔG‡ = 22.8 kcal mol-1

TS3 TS4

ΔG‡ = 21.8 kcal mol-1 ΔG‡ = 7.4 kcal mol-1
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INT5 INT6

ΔG = -0.4 kcal mol-1 ΔG = -5.0 kcal mol-1

Figure S16. DFT optimized transition state structures and product complexes with key 
bond distances given in Å. INT5 is the product complex resulting from TS4, and INT6 
is the product complex that is stabilized by π-π interaction and hydrogen bonding 
between phenol OH group and imine N atom.
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8.3 Determination of selectivity ratio using simple transition state theory

The Eyring equation 

gives the rate constant under simple transition state theory (TST) assumptions.

Under kinetic control, as we compare the barrier heights difference between 

competing transition states, the ratio of the rates between two pathways is given by:

where kX is the rate constant of pathway X (X=A or B); ΔGX
‡ is the activation barrier 

for pathway X; and ΔΔGX
‡ is the difference in the barrier heights; and R is the gas 

constant, T the temperature. Note that the Eyring Equation pre-exponential factor 

cancels when comparing the ratio of the rate constants. Thus, using the calculated 

ΔΔGX
‡ value (difference of barrier heights between competing TSs) at the reaction 

temperature (e.g., 25ºC = 298.15K), we are able to obtain the ratio of competing rates.
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11. Proposed Mechanism 

Scheme S5. Proposed Mechanism for the C=C/C=N exchange reaction in current 
system.
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Table S5. Absolute values (in Hartrees) for SCF energy, zero-point vibrational energy 
(ZPE), enthalpy and quasi-harmonic Gibbs free energy (at 25oC/298.15 K) for 
optimized structures are given below. Single point corrections in SMD DMSO using 
M06-2X/def2-TZVP level of theory are also included. 

Structur

e
E/au ZPE/au H/au T.S/au qh-G/au

SP 

SMD(DMSO)-

M06-2X/def2-

TZVP 

INT1 -1453.206739 0.479231 -1452.6953 0.095626 -1452.782669 -1454.867958

TS1 -1453.18657 0.480134 -1452.6755 0.091391 -1452.759837 -1454.860409

INT2 -1453.187148 0.481158 -1452.6747 0.092654 -1452.759898 -1454.865265

TS2a -1453.165743 0.479872 -1452.6549 0.092394 -1452.739556 -1454.836732

TS2 -1453.169756 0.480115 -1452.6589 0.091534 -1452.742991 -1454.844819

INT3 -1453.218819 0.481933 -1452.706 0.091293 -1452.790215 -1454.876625

TS2b -1453.166441 0.480594 -1452.6556 0.088423 -1452.737938 -1454.836837

TS2c -1453.169755 0.480963 -1452.6584 0.089216 -1452.74142 -1454.835832

TS3 -1453.167173 0.480212 -1452.6561 0.091287 -1452.740279 -1454.835999

INT4 -1453.193145 0.481565 -1452.6802 0.09363 -1452.765713 -1454.87215

TS4 -1453.186831 0.479338 -1452.6761 0.095148 -1452.762297 -1454.856644

INT5 -1453.208289 0.479684 -1452.6964 0.096175 -1452.783959 -1454.868803

INT6 -1453.212148 0.479403 -1452.7007 0.097267 -1452.788597 -1454.875463

TS1' -1453.182581 0.479873 -1452.6716 0.092987 -1452.756724 -1454.85192
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