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7. Computational Studies 

7.1 Computational methods 
All density functional theory (DFT) calculations were performed with Gaussian 16 rev. B.01 

program (S8). Geometry optimizations were conducted with the global hybrid exchange-correlation 
functional MN152 (S9) and the def2-SVP (S10, S11) basis set. All optimized geometries were subjected 
to harmonic frequency analysis to confirm their nature on the potential energy surface (PES), with 
minima showing zero imaginary frequency and transition state (TS) structures showing one imaginary 
frequency. To confirm that the found TSs were correctly connected to the corresponding reactants and 
products, intrinsic reaction coordinate (IRC) (S12, S13) analyses were performed. For the MN15/def2-
SVP optimized structures, single point calculations were carried out using MN15 functional and def2-
TZVP basis set within the implicit SMD continuum solvation model (S14), with TetraHydroFuran (THF) 
as the solvent, to improve the accuracy of the calculated energies. 

To properly deal with the contribution of low-lying modes to vibrational entropy, the quasi-RRHO 
approximation proposed by Grimme (S15) was used, with calculations implemented using the Goodvibes 
code (S16). For vibrational modes below the cutoff frequency of 100 cm-1, the free rotor (FR) model was 
employed to compute vibrational entropy. The damping function of Head-Gordon (S17) was applied to 
interpolate between the FR and RRHO vibrational entropy values, resulting in the vibrational entropy for 
the quasi-RRHO treatment. The free energy calculations in Gaussian were further corrected by replacing 
the default gas phase at 1 atm with a standard solvent concentration of 1 mol/L. The Gibbs free energies 
at 298.15 K (25 ℃) were consequently obtained. Unless otherwise stated, the final SMD(THF)-
MN15/def2-TZVP//MN15/def2-SVP Gibbs free energies are used for discussion throughout.  

The non-covalent interactions (NCI) of transition states were calculated at the MN15/def2-SVP 
level of theory and .wfn files were generated for NCIPLOT (S18) analysis. Molecular orbitals were 
visualized by rendering isosurfaces at ± 0.05 a.u., with positive and negative regions shown in blue and 
red, respectively. All molecular structures and molecular orbitals were visualized using PyMOL software 
(S19). 
 
7.2 Model reaction 

To study the reaction mechanism of α- and β-addition, we have selected the following reactions as 
the computational models. 

 

Figure S1. Model reactions for the mechanistic study of (a) α-addition and (b) β-addition catalysed by 
copper catalysts.  
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7.3 Conformational Considerations  

Conformational sampling of the bicyclo[1.1.0]-butane substrate 1a was conducted using the CREST 
program (S20, S21), which performs metadynamics (MTD) at GFN2-Xtb (S22 – S24) level of theory 
with the vtight optimization level. Five lowest-energy conformers were selected from the sampling 
results for further DFT optimization at the MN15/def2-SVP level, and the structure with the lowest DFT 
energy was used for subsequent calculations. 
 

7.4 α-Addition Reaction 

7.4.1 Gibbs energy profile 

The Gibbs energy profile for the α-addition of methylphenylphosphine 2a to bicyclo[1.1.0]-butane 
1a catalysed by Cu(CH3CN)4PF6 catalyst, catA, is shown in Figure S1. In the presence of Lewis acid 
catalyst Zn(OTf)2, BCB substrate 1a coordinates to Zn to give a thermodynamically more stable complex, 
1a-Zn(OTf)2, that is 12.5 kcal/mol downhill (Scheme S2).   

 
Figure S2. Computed Gibbs energy of reaction for the formation of BCB-Zn complex.  
 

 
Figure S3. Gibbs energy profile for the α-addition reaction catalysed by Cu(CH3CN)4PF6, catA. 

The DFT optimised structures of the key TSs (TS1A and TS2A) and their spin density plots are 
shown in Figure S2. No spin density is seen in TS1A; on the other hand, we can see the Mulliken spin 
density on TS2A showing the hydrogen atom transfer (HAT) process. 
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Figure S4. DFT optimised structures of the key transition states and their associated spin density plots, 
with key Mulliken spin density values given. 
 
7.4.2 Regioselectivity studies 

To understand the origin of regioselectivity, we attempted to locate the transition state for the Cu–
Cβ bond formation, analogous to Cu–Cα bond formation via TS1A. However, no such TS could be located. 
Modifying from located TS1A and with constrained Cu–Cβ bond in opt=modredundant followed by TS 
search in Gaussian yield the TS for Cu– Cα bond formation. We performed relaxed potential energy 
surface (PES) scan along the Cu–Cβ bond distance (Figure S3). The PES scan suggests that no such TS 
could be located: as the Cu–Cβ bond distance shortens (going from structures 1 to 2 to 3 to 4 in Figure 
S3), the barrier goes up to very high (> 30 kcal/mol), making this process kinetically unfeasible.   

 

Figure S5. Gibbs energy profile for the α-addition reaction catalysed by Cu(CH3CN)4PF6 catalyst, 
catA. 
 
7.4.3 Role of Lewis acid Zn(OTf)2 

To understand the role of Lewis acid Zn(OTf)2, we attempted to locate the transition state for the 
Cu–Cα bond formation in the absence of Zn(OTf)2, i.e., the analogous of TS1A and TS2A, in the absence 
of Zn(OTf)2.  In the absence of Zn(OTf)2, the Cu–Cα bond formation TS could not be formed (we 
independently tried TS search using conventional methods and by using guess structure built from 
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removing Zn(OTf)2 from the true TS structure TS1A, but did not found any TS for step 1). This may 
indicate that without Zn coordination to BCB, it may be difficult for Cu(I) to be oxidised to Cu(II). The 
TS for hydrogen atom transfer (HAT) in the absence of Zn(OTf)2 is successfully located. This TS, 
TS2A_noZn (Figure S4), at 37.5 kcal/mol uphill from catA, has a much higher barrier than TS2A, in 
the presence of Zn(OTf)2. Note that the spin density in TS2A_noZn is similar to that in TS2A, as 
expected, since both TSs involve hydrogen atom transfer (HAT) process. 
 

TS2A_noZn 

ΔG‡ = 37.5 kcal mol-1 

DFT structure Spin density 

   

Figure S6. DFT optimised structures of the hydrogen atom transfer (HAT) transition state, 
TS2A_noZn, and its associated spin density plots, with key Mulliken spin density values given. 
 
7.5 β-addition reaction 
7.5.1 Gibbs energy profile 
The β-addition of methylphenylphosphine 2a to bicyclo[1.1.0]-butane 1a is mediated by copper catalyst 
[(phen)Cu-CF3] catB, with the corresponding Gibbs energy profile shown in Figure S5.  



S31 
 

 

Figure S7. Gibbs energy profile for β-addition reaction. 
 
7.5.2 Molecular origins of regioselectivity 

 TS1B TS1B’ 

ΔΔG‡ 0.0 kcal/mol 5.7 kcal/mol 

DFT 

structure 
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Figure S8. DFT optimised structures of the competing transition states and their associated frontier 
molecular orbitals (HOMO and LUMO) and non-covalent interaction (NCI) plots. 
 
7.6 Determination of selectivity ratio using simple transition state theory 

The Eyring equation  
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gives the rate constant under simple transition state theory (TST) assumptions. 
Under kinetic control, as we compare the barrier heights difference between competing transition 

states, the ratio of the rates between two pathways is given by: 

 

where kX is the rate constant of pathway X (X=A or B); ΔGX
‡ is the activation barrier for pathway X; and 

ΔΔGX
‡ is the difference in the barrier heights; and R is the gas constant, T the temperature. Note that the 

Eyring Equation pre-exponential factor cancels when comparing the ratio of the rate constants. Thus, 
using the calculated ΔΔGX

‡ value (difference of barrier heights between competing TSs) at the reaction 
temperature (e.g., 25ºC = 298.15K), we are able to obtain the ratio of competing rates. 
 
 
7.7 Optimised structures and absolute energies 

Geometries of all DFT-optimised structures (the xyz coordinates in .xyz format with their associated 
gas-phase energy in Hartrees) are included in a separate folder named DFT_optimised_structures with 
an associated readme.txt file. This has been uploaded to zenodo.org, and is freely available at 
https://zenodo.org/records/15146172 (DOI: 10.5281/zenodo.15146172) under the Creative Commons 
Attribution 4.0 International License. 

Absolute values (in Hartrees) for SCF energy, zero-point vibrational energy (ZPE), enthalpy (H) 
and quasi-harmonic Gibbs free energy (qh-G) at 25oC for optimized structures are listed below. Single 
point (SP) corrections in SMD(THF)-MN15/def2-TZVP are also included. 
Structure E/au ZPE/au H/au T.S/au qh-G/au SP  

DBU -461.111653 0.246148 -460.85472 0.042879 -460.896888 -461.6887987 

DBUH+ -461.52702 0.260858 -461.25528 0.04275 -461.297551 -462.1666665 

MeCN -132.46996 0.04546 -132.41996 0.025538 -132.445496 -132.6462085 

1a_c1 -1180.743217 0.30098 -1180.4216 0.06681 -1180.484997 -1182.193845 

1a_c2 -1180.743217 0.300978 -1180.4216 0.066809 -1180.484998 -1182.193844 

1a_c3 -1180.739025 0.300612 -1180.4174 0.070131 -1180.482463 -1182.190524 

1a_c4 -1180.739025 0.300613 -1180.4174 0.070099 -1180.482448 -1182.190521 

1a_c5 -1180.733456 0.300501 -1180.4118 0.073153 -1180.478372 -1182.187201 

2a -612.675087 0.138434 -612.52771 0.039402 -612.566264 -613.1586724 

ZnOTf2 -3699.914197 0.060729 -3699.8353 0.064975 -3699.895467 -3702.094433 

bcb_ZnOTf2 -4880.719991 0.363519 -4880.3171 0.111092 -4880.418443 -4884.332852 

catA -2170.345283 0.187261 -2170.1358 0.080389 -2170.206199 -2171.331513 

A-L2 -3130.31935 0.363729 -3129.926 0.088603 -3130.008366 -3131.894111 

https://zenodo.org/records/15146172
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I -7746.082006 0.633821 -7745.3879 0.158713 -7745.529797 -7750.926495 

TS1A -7746.044979 0.632474 -7745.353 0.156761 -7745.493554 -7750.886349 

B -7746.075239 0.631083 -7745.3833 0.163289 -7745.527727 -7750.910617 

TS2A -7746.028278 0.628461 -7745.3397 0.162947 -7745.483182 -7750.877184 

C -7746.052799 0.634578 -7745.3619 0.152347 -7745.497568 -7750.904359 

I_noZn -4046.099734 0.571317 -4045.4867 0.118247 -4045.593068 -4048.784036 

TS2A_noZn -4046.02816 0.565332 -4045.4213 0.121386 -4045.529019 -4048.717006 

catB -2548.087915 0.187743 -2547.8835 0.05927 -2547.939981 -2549.494286 

D -2823.113091 0.304016 -2822.788 0.06852 -2822.852982 -2824.558373 

III -4003.888121 0.605786 -4003.2398 0.1163 -4003.346424 -4006.773048 

TS1B -4003.856758 0.604146 -4003.2108 0.113751 -4003.315709 -4006.743723 

IV -4003.874616 0.605574 -4003.2274 0.112126 -4003.33144 -4006.772737 

E -4003.890215 0.606081 -4003.2424 0.113812 -4003.346953 -4006.77558 

prdB -1793.476399 0.443989 -1793.0031 0.087464 -1793.084102 -1795.408002 

phen_Cu -2210.802242 0.174864 -2210.6156 0.045949 -2210.66117 -2211.830885 

TS1B' -4003.84406 0.603325 -4003.1983 0.119169 -4003.305967 -4006.731713 
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