
A 10-MINUTE RATHER QUICK INTRODUCTION TO
QUANTUM MECHANICS

1. What is quantum mechanics (as opposed to classical mechanics)?

Quantum mechanics (QM) deals with systems on atomic scale level, whose be-
haviours cannot be described by classical mechanics.

Figure 1. Left: A classical particle moves in a well-defined path, x(t), governed
by Newton’s Laws of Motion. Right: A quantum particle has a probabilistic
distribution of positions described by a wavefunction, Ψ(x, t).

Classical Mechanics Quantum Mechanics
Size of system Macroscopic Atomic/sub-atomic

Nature Deterministic Probabilistic
Governed by Newton’s Laws of Motion Schrödinger Equation

Energy Continuous Quantized
Table 1. A comparison between classical mechanics and quantum mechanics.

As we will see, many properties (e.g., energy, momentum etc) in QM are discrete;
the word quantum1/quantized/quantization describes the fact that these properties
can only have discrete (as opposed to continuous in classical mechanics) values.

1This word was first used by Planck to describe a packet of energy in his attempt to explain
the blackbody catastrophe.

1



Quantum Mechanics ZHANG XINGLONG

2. Why do we need quantum mechanics?

Classical mechanics fail when applied to systems of atomic scale:

- Emission spectra of excited atoms (Fig. 2): only certain lines are observed,
implying that transitions occur between discrete energy levels.

- Blackbody radiation (Fig. 3). Classical explanation: energy radiation due
to electron vibrations; expect higher radiation at higher temperature due
to larger frequency of vibrations, but radiations are small at high frequency
regardless of temperature (Fig. 3 circled in red). Quantum: E = hf , so at
high f , E is so large that vibrations becomes difficult.

- Photoelectric effect. Shining light on a metal induces electron emission
without time delay only if the light is above certain frequency but indepen-
dent of its intensity/brightness. Classically, light is a wave and it would
take time for energy to build up if dim/low intensity light is used. Quan-
tum explanation is that E = hf , so with high enough frequency, light (or
the photon) has enough energy to induce electron emission.

- Bohr’s atom confines electron motion to specific orbits. Classically, elec-
trons are particles and moving electrons around an orbit has acceleration
and thus radiates energy, this causes the electrons to continuously lose
energy and spiral towards nucleus. This does not occur. Quantum me-
chanically, electrons move probabilistically.

Figure 2. Emission spectra of excited atoms. Note that only specific lines,
instead of a spectrum of lines, are observed.

3. Is electron a particle? Is light a wave?

As we can see, although conventionally people think about electrons as being
particle and light as being wave, they actually can be both. Electrons can have
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Figure 3. Spectra of blackbody radiation. Note that only specific lines, instead
of a spectrum of lines, are observed. Adapted from Three Failures of Classical
Physics. https://physics.weber.edu/carroll/honors/failures.htm. B. W. Carroll.
Published April 08, 2014. Accessed 21 July 2018.

wave-like properties as shown by electron diffraction and interference. Light can
have particle properties as seen in photoelectric effect. We really want to think of
them as being both wave and particle. This is the wave-particle duality.

Interestingly, J. J. Thomson was awarded a Nobel prize (1906) for showing
that electron is a negatively charged particle, while his son, George Thomson,
was awarded a Nobel prize (1937) for showing that electron is a wave (electron
diffraction experiment)!

4. So, what’s a quantum system and how do we make measurements?

Richard Feynman once said “I think I can safely say that nobody understands
quantum mechanics.”. Fortunately, we can still do quantum mechanics before
completely understanding it. We take postulates in quantum mechanics as given2,
and apply it to make predictions that can be tested by experiments. Indeed,
QM has not failed since its formulation in agreeing with/explaining experimental
observations.

2We will not question the validities of or going philosophical about these postulates but simply
accepts them as given. This is much like accepting the axioms in mathematics before proving
theorems. We simply do not question the axioms.
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A quantum mechanical system is represented by its wavefunction − this is a
mathematical function of the positions of all particles in the system and contains
all the information about the system. In 3D, we represent this as Ψ(x, y, z, t), or
in 1D, we have Ψ(x, t). For time-independent system we simply write Ψ(x). We
only consider time-independent systems here.

4.1. Born’s interpretation of wavefunction. How is wavefunction related to
the particle in the system? Max Born postulated that

|Ψ|2 = Ψ∗Ψ (1)

is the probability density of finding the particle. For example, for a particle confined
to a one-dimensional box (imagine the particle is only allowed to move in a finite
line segment), then, |Ψ(x)|2dx gives the probability of finding the particle between
the infinitesimal distances x and x + dx. The probability of finding the particle
between two positions x = a0 and x = b0 is then

P (a0 ≤ x ≤ b0) =
∫ b0

a0
|Ψ(x)|2dx (2)

Because the total probability of finding the particle is 1, the wavefunction needs
to satisfy the normalization condition, viz.,∫ ∞

−∞
|Ψ(x)|2dx = 1 (3)

where the integration goes over all length of the box.
The normalized probability density of finding the particle is then given by

P (x) = Ψ∗(x)Ψ(x)∫∞
−∞Ψ∗(x)Ψ(x)dx. (4)

4.2. Measuring physical observables. Any physical observable is represented
by a quantum operator.3 To obtain the information from the wavefunction, we
apply the quantum operator to it. An operator is a mathematical operation that
acts on a function to return another function. For example, d/dx is a differen-
tiation operator that returns the derivative of a function when acting on it. A
multiplication is another operator. All quantum operators has a caret/hat (ˆ) on
top of the symbol.

3We will see later (in second year) that there are certain restrictions on these operators. For
example, they have to be Hermitian and have associated properties.
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We need the position operator and the momentum operator to construct every-
thing else:

Position operator: x̂ (multiply by x) (5)

Momentum operator: p̂ = −ih̄ ∂
∂x

(6)

Generally, to construct a quantum operator, write the physical quantity in terms
of position and momentum variables as in classical mechanics and then replace
them using Eq.s (5) and (6).

4.3. A general quantum operator. We can denote a general quantum operator
as Q̂, to measure its corresponding physical observable Q, we apply this operator
to the system represented by the wavefunction Ψ. We then have

Q̂Ψ = QΨ (7)

where Q is a constant. Note that the quantum operator returns the function itself
multiplied by a constant value, this equation is thus an eigenequation; the constant
Q is the eigenvalue whereas the wavefunction Ψ is the eigenfunction.

In general, in QM, the expectation value (the average of a series of measurements)
is given by

〈Q〉 =
∫

Ψ∗(x)Q̂Ψ(x)dx∫
Ψ∗(x)Ψ(x)dx (8)

4.4. The total energy operator, Ĥ. The total energy of the system is an impor-
tant quantity; knowing the total energy of the system allows many other properties
to be calculated (Fig. 4). The total energy operator is called the Hamiltonian
of the system and is the sum of kinetic energy operator and the potential energy
operator (as per classical mechanics):

Ĥ = T̂ + V̂ (9)

where T̂ is the kinetic energy operator and V̂ is the potential energy operator. We
need to convert this in terms of position and momentum operators using Eq.s (5)
and (6). For a linear system, T̂ = p̂2/2m where m is the mass of the particle; V̂ is
simply multiplication by the potential energy expression. Note that the potential
energy expression is dictated by the system under consideration.
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Figure 4. Molecular properties that can be calculated by knowing the energy
of the system.

To measure the total energy of the system, we then apply the Hamiltonian
operator to the wavefunction representing the system, this should return a real
eigenvalue4 that represents the physical measurement of total energy. We have the
famous (time-independent) Schrödinger equation:

ĤΨ = EΨ
(10)

5. Models in quantum mechanics

It is important at this stage to distinguish atoms from molecules. Atoms have no
internal structure and have only translational and electronic degrees of freedom.
This means that there are translational and electronic energy levels associated
with atoms. For molecules however, on top of having translational and electronic
degrees of freedom, there are also rotational and vibrational degrees of freedom,
meaning that molecules have translational, rotational, vibrational and electronic
energy levels associated with them (Fig. 5).

We want to be able to model each degree of freedom separately5 in quantum
mechanics. We employ simple models to treat each degree of freedom as shown in
Table 2.

4You will see in second year that because the operators are Hermitian, their eigenvalues must
be real. Physically, since they correspond to physical observables, they have to be real.

5We can do so due to Born-Oppenheimer approximation.
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Figure 5. Molecular energy levels associated with each degree of freedom. The
energy level spacings are not drawn to scale.

Degree of freedom Model
Translation Particle-in-a-box

Rotation Rigid rotor
Vibration Harmonic/Anharmonic oscillator

Electronic Hydrogen Atom/Multielectronic system
(very complex, no simple models)

Table 2. Models in quantum mechanics.

5.1. Translation. The quantum mechanical model for translation is the particle-
in-a-box model. The Schrödinger equation for this system, in 1D, is

Ĥψ =
(
p̂2

2m + V̂

)
ψ = − h̄2

2m
d

dx
ψ + V̂ ψ = Eψ (11)

where the potential V (Fig. 6) is given by

V =

0 if 0 < x < L

∞ otherwise

where L is the box length. Within the box, we can easily solve the following
second-order linear ordinary differential equation

− h̄2

2m
d

dx
ψ = Eψ.
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Applying boundary conditions that the wavefunction vanishes at both ends of the
box (infinite potential outside the box, so the particle cannot tunnel/move out of
the box), we arrive at energy quantization with the following energy expression:

En = n2h2

8mL2
(12)

Figure 6. Potential energy for a particle-in-a-box.

5.2. Rotation. The quantum mechanical model for rotation is the rigid rotor
model. In 3D, the full Schrödinger equation for this system is

Ĥψ =
(
Ĵ2

2I + V̂

)
ψ = Ĵ2

2I ψ = Eψ (13)

where the potential V is zero, I is the moment of inertia and I = µr2 for a
diatomic and I = ∑

i mir
2
i for a polyatomic. We consider only diatomic and linear

polyatomics here. Ĵ2 is angular momentum operator and is given, in spherical
polar coordinates, by

Ĵ2 = −h̄2
(

1
sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
Note that the eigenfunctions of the rigid rotor are also the spherical harmonics,
YJMJ

.
We can solve this differential equation (see here for the maths if interested) to

get the energy for the rigid rotor, but it is enough to know that

Ĵ2 YJMJ
= h̄2J(J + 1)YJMJ

(14)
8
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so that the energy E in the Schrödinger equation Eq. (13) is given by

EJ = h̄2

2I J(J + 1) = BJ(J + 1)
(15)

where B = h̄2/(2I) is the rotational constant. The degeneracy of each rotational
energy level J is given by gJ = 2J + 1 due to the number of possible MJ values.

5.3. Vibration. The quantum mechanical model for a vibrating bond is the sim-
ple harmonic oscillator (SHO). The kinetic energy operator is the same as in
the particle-in-a-box, T̂ = p̂2/2m = −h̄2/2m whereas the potential energy oper-
ator is now V̂ = (1/2)kx2, this is simply the potential energy for a SHO. The
Schrödinger equation for the simple harmonic oscillator then becomes

Ĥψ =
(
p̂2

2m + V̂

)
ψ =

(
− h̄2

2m
d2

dx2 + 1
2kx

2
)
ψ = Eψ (16)

This is a complicated second order differential equation. Solving this yields the
energy expression for the SHO:

Ev =
(
v + 1

2

)
h̄ω =

(
v + 1

2

)
hν

(17)

where v is the vibrational quantum number and ν is the vibrational frequency, ω
is the angular frequency.

5.4. Electronic. Except for the simple case of hydrogen atom, there is no quan-
tum mechanical model for the energies of electronic levels; these have to be deter-
mined experimentally, usually by spectroscopy, or more recently, from computation
(solving the Schrödinger equation numerically).

6. How do we obtain thermodynamic properties from quantum
mechanics and statistical mechanics?

Consider a molecule. It has associated translational, rotational, vibrational
energy and electronic energy levels. Now, we can apply quantum mechanics to solve
for the translational, rotational and vibrational energy levels using simple models
as outlined before. The electronic energy can be obtained from spectroscopy (via
experiments) or theoretical calculations (via computation). With these energies,
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we can form the canonical partition function of the system

Q = ∑
i e
−Ei/kT = ∑

j gje
−Ej/kT

(18)
where Ei is the energy of the ith quantum state and the summation index i goes
over all states; alternatively, we can sum over all levels j, each having energy Ej

and degeneracy gj.
We can then use the “bridge equation” for the canonical ensemble

A = −kT lnQ
(19)

to link the macroscopic thermodynamic quantity A to the partition function, Q,
arising from the microscopic microstates. We will therefore be able to find all
thermodynamic properties by simply knowing the energy levels of the molecule
(see Statistical Mechanics in year 2).
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