
STATISTICAL MECHANICS

1. Introduction

The study of statistical mechanics (in second year) concerns using energy levels
of a single molecule to predict the bulk thermodynamic properties of a sample of
large numbers of the same molecule. In classical thermodynamics, properties such
as pressure, heat capacity, equilibrium constants etc, have to be measured. With
statistical mechanics, these properties can be derived from an understanding of the
underlying microscopic properties, in particular, the energy levels of the molecule.
It is ‘statistical’ since probability theory is used to average a large number of
microstates to give an averaged macroscopic property. The central idea of this
study is the partition function of a system.

The energy levels of a molecule can usually be obtained using either quantum
mechanics (from theory, with approximations) or spectroscopy (from experiments).
Three statistical ensembles can be distinguished, each suited to the modelling of
an appropriate system:

(1) A microcanonical or NVE ensemble has a fixed number of molecules, N ,
fixed volume V and fixed total energy of the system E. This is used to
model an isolated system, one that does not allow the exchange of either
matter or energy with the surrounding.

(2) A canonical or NVT ensemble has a fixed number of molecules, N , a fixed
volume V and a fixed temperature T . The energy of the system is not
known exactly. This is used to model a closed system, one that allows the
exchange of energy, but not matter, with the surrounding.

(3) A grand canonical or µVT ensemble has a fixed chemical potential µ,
a fixed volume V and a fixed temperature T . Neither the energy nor
the number of particles is known exactly. This is used to model an open
system, which allows the exchange of both energy and matter, with the
surrounding.

We are primarily interested in the first two ensembles at this stage.
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2. The Boltzmann distribution

Consider a fixedNV E (microcanonical) ensemble of a sample of identical molecules,
we have

total energy = E = NĒ = N
∑
i

εiPi (1)

total number of possible microstates =
∑
n

W (n) (2)

where Ē is the average energy per molecule, Pi is the probability of any selected
molecule in state i; W (n) is the number of microstates in configuration n. For
each configuration n ≡ (n1, n2, ..., ni, ...), where ni is the number of molecules
found in state i, assuming the molecules can be localised, the total number of
possible microstates is given by

W (n) = N !
Πini!

(3)

where the division by each ni! accounts for the fact that ni molecules in state i are
identical.

The probability that any molecule is in state i is the probability that the mole-
cule is found in state i for a given configuration n, pi(n), weighted by the proba-
bility that the microstate is found in that particular configuration, p(n), summed
over all possible configurations, viz,

Pi =
∑
n

pi(n)p(n) =
∑
n

pi(n) W (n)∑
nW (n) (4)

This probability is also given by the ratio of the number of particles in quantum
state i divided by the total number of particles:

Pi = ni
N
. (5)

The ergodic hypothesis states that, over a long period of time, all accessible
microstates are equally probable. In other words, each microstate in each config-
uration is equally likely. However, we will postulate that there is one particular
configuration having the largest number of microstates (given by Eq. (3)) such
that the total number of microstates in all other configurations are negligible. We
can visualise this in Figure 1.
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Figure 1. Configuration n∗ has the highest number of accessible
microstates out of all possible configurations. This configuration is
called the most probable distribution and is considered to dominate
over any other configurations.

With this assumption, we have

p(n) =

1 if n = n∗

0 if n 6= n∗

such that we have replaced the total number of microstates arising from all possible
configurations by the total number of microstates arising from the most probable
configuration: ∑

n

W (n) = W (n∗).

We now proceed to find this configuration n∗ = (n∗1, · · · , n∗i , · · ·) for which the
total number of microstates, W (n∗), is a maximum, subject to the constraints
that the total energy and total number of particles of the system (Eq.s (1) and
(2)) remain the same. To maximise W , it is equally valid to maximise lnW ,
since ln function is monotonically increasing. Applying the method of Lagrange
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multipliers (see lectures), we arrive at the Boltzmann distribution:

Pi = n∗i
N

= e−βεi∑
i e−βεi

(6)

where β = 1/kT . The molecular partition function, q, is defined by

q = ∑
i e
−εi/kT = ∑

j gje
−εj/kT

(7)

where εi is the energy of the ith state and the summation index i goes over all states;
alternatively, we can sum over all levels j, each having energy εj and degeneracy
gj. We see that the molecular partition function arises as a normalisation constant
in the probability distribution function, from which all thermodynamic properties
can be deduced. Note that this derivation of Maxwell-Boltzmann statistics is also
valid for indistinguishable systems, provided that the temperature is large enough
such that the number of accessible quantum states (measured by the partition
function) are much larger than the total number of particles in the system.

For the canonical ensemble, where NV T are fixed, we can follow the same
procedure as before, replacing the idea of ‘particle’ in a microcanonical ensemble,
by the idea of a ‘system’ in a canonical ensemble, to arrive at

Pi = n∗i
N

= e−βEi∑
i e−βEi

(8)

where now i refers to a selected system from the ensemble (instead of a selected
molecule from an isolated system in the microcanonical ensemble), and Ei is the
energy of the ith system in the ensemble. Eq. (8) is the canonical distribution and
we can similarly define the canonical partition function

Q = ∑
i e
−Ei/kT = ∑

j gje
−Ej/kT

(9)

as before. The canonical ensemble is particularly important as many experimental
set-ups have fixed volume (in a closed container) and fixed temperature (in a heat
bath) and can be modelled using this ensemble.
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3. Thermodynamic quantities from partition function

We consider the canonical ensemble here on. The average energy per system of
ensemble is the same as the internal energy of the system and is given by

E = E
N

=
∑
i

EiPi (10)

where E is the total energy of the ensemble of all systems, N is the number of
systems in the ensemble; the sum i runs over all states of the systems.

Aside

In statistics, the average/mean value of a random variable, X, is
given by the sum of all the measured values, xi, weighted by the probability
distribution function, p(X = xi). For discrete variable, this is

x̄ = 〈x〉 =
∑
i

xi p(X = xi), (11)

and for continuous variable, this is

x̄ = 〈x〉 =
∫
x p(X = x)dx. (12)

Here in statistical mechanics, each quantum state has a discrete energy level,
thus the probability distribution function is discrete.

Now from probability theory, and substituting Eq. (8) into Eq. (10), we have

E =
∑
i

EiPi =
∑
i

Ei
e−βEi∑
j e
−βEj

= 1
Q

∑
i

Eie
−βEi

Notice that if we differentiate e−βEi with respect to β (V is fixed as this is an
NV T -ensemble), this gives us a copy of Ei, that is(

− ∂

∂β
e−βEi

)
V

= Eie
−βEi

so that

E = 1
Q

∑
i

(
− ∂

∂β
e−βEi

)
V

= − 1
Q

(
∂

∂β

)
V

∑
i

e−βEi = − 1
Q

(
∂Q

∂β

)
V

= −
(
∂ lnQ
∂β

)
V

,

using chain rule, we have

E = −
(
∂ lnQ
∂β

)
V

= −
(
∂T

∂β

)
V

(
∂ lnQ
∂T

)
V

= kT 2
(
∂ lnQ
∂T

)
V
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where, in the last step, we have used β = 1/kT in the following:

∂T

∂β
= 1
∂β/∂T

= 1
−1/kT 2 = −kT 2

Thus, we have the energy expression completely specified in terms of the partition
function:

E = kT 2
(
∂ lnQ
∂T

)
V

(13)
Knowing the partition function of a given system allows us to determine its internal
energy via Eq. (13) above. This then allows us to find the heat capacity, again at
fixed volume, CV , via

CV =
(
∂E

∂T

)
V

(14)

The easiest way forward is to introduce the ‘bridge equation’ for the canonical
ensemble:

A = −kT lnQ
(15)

Note that you can of course follow the lectures and derive entropy S first and
obtain this same expression via thermodynamic relation

A = E − TS, (16)

but this ‘bridge equation’ is the easiest to proceed here. It is a ‘bridge’ between
the macroscopic thermodynamic quantity A and the partition function, Q, arising
from the microscopic microstates.

By rearranging Eq. (16) and substituting the bridge equation, we arrive at the
expression of entropy S in terms of the partition function:

S = E

T
− A

T
= E

T
+ k lnQ = kT

(
∂ lnQ
∂T

)
V

+ k lnQ (17)

Here again, the entropy of the system can now be found by knowing the partition
function of the system.

All other thermodynamic properties can now be found via the fundamental
thermodynamic relations. For example, we have

dA = −PdV − SdT +∑
i µidni

(18)
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From this, the pressure of the system, P , is given by

P = −
(
∂A

∂V

)
T,n′

is

= −
(
∂(−kT lnQ)

∂V

)
T,ni

= kT

(
∂ lnQ
∂V

)
T,ni

(19)

again, you can now find thermodynamic pressure by simply knowing the partition
function (a microscopic property) of a system.

Similarly, the entropy, S, is given by

S = −
(
∂A

∂T

)
V,ni

= −
(
∂(−kT lnQ)

∂T

)
V,ni

= k

(
∂(T lnQ)

∂T

)
V,ni

(20)

which gives you the same result as in Eq. (17) when you do product rule differen-
tiation with respect to T in the last step above.

The chemical potential is similarly given by

µi =
(
∂A

∂ni

)
T,V,nj 6=ni

=
(
∂(−kT lnQ)

∂ni

)
T,V,n

′
j

= −kT
(
∂ lnQ
∂ni

)
T,V,n

′
j

(21)

All other thermodynamic energies can now be found:

H = E + PV = kT 2
(
∂ lnQ
∂T

)
V

+ V kT

(
∂ lnQ
∂V

)
T,ni

(22)

G = H − TS = A+ PV = −kT lnQ+ V kT

(
∂ lnQ
∂V

)
T,ni

(23)

The only thing now remains is to find the system-specific canonical partition
function Q for a given system and substituting this into appropriate thermody-
namic quantities to obtain those values. Two kinds of independent systems, each
with either distinguishable molecules (as in solids) or indistinguishable molecules
(as in gases), are commonly considered. The canonical partition function is given,
since the particles are identical, by

Q =

qN/N ! indistinguishable molecules
qN distinguishable molecules

(24)

Using these expressions, we are able to find all thermodynamic quantities in terms
of the molecular partition function q.

As an example, if we want to find the entropy of a system of indistinguishable
particles, Q = qN/N ! , we need to substitute this partition function into Eq. (17).
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Consider first

lnQ = ln q
N

N ! = ln qN − lnN !' N ln q − (N lnN −N) = N ln q −N lnN +N,

and
(
∂ lnQ
∂T

)
V

=
(
∂

∂T

)
V

(N ln q −N lnN +N) = N

(
∂ ln q
∂T

)
V

so that Eq. (17) for entropy now becomes

S = kT

(
∂ lnQ
∂T

)
V

+ k lnQ

= NkT

(
∂ ln q
∂T

)
V

+ k(N ln q −N lnN +N)

= NkT

(
∂ ln q
∂T

)
V

+Nk(ln q − lnN + 1)

= NkT

(
∂ ln q
∂T

)
V

+Nk ln
(
q e

N

)
(25)

Everything remains now is to find the molecular partition function q for a given
system. The molecular partition function can be decomposed into individual com-
ponents:

q = qtrans qrot qvib qelec (26)
since the total energy of a molecule is approximately ε = εtrans + εrot + εvib + εelec
and q is given by Eq. (7). To find the partition function due to each contribution,
we now need to find the energy expressions of each contribution, using quantum
mechanics and spectroscopy.

4. Energy Levels of each contribution

4.1. Translation. The quantum mechanical model for translation is the particle-
in-a-box model. The Schrödinger equation for this system, in 1D, is

Ĥψ =
(
p̂2

2m + V̂

)
ψ = − h̄2

2m
d

dx
ψ + V̂ ψ = Eψ (27)

where the potential V is given by

V =

0 if 0 < x < L

∞ otherwise

where L is the box length. Within the box, we can easily solve the following
second-order linear ordinary differential equation

− h̄2

2m
d

dx
ψ = Eψ.
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Applying boundary conditions that the wavefunction vanishes at both ends of the
box, we arrive at energy quantization with the following energy expression:

En = n2h2

8mL2
(28)

The one-dimensional translational partition function is then given by

qtrans,1D =
∞∑
n=1

e−βEn

We assume that the number of accessible translational energy levels is very large
at temperature T (since thermal energy kT is much greater than the translational
energy level spacings), we are going to approximate the sum above by an integral.
We then have

qtrans,1D =
∞∑
n=1

e−βEn '
∫ ∞

0
e−βEndn =

∫ ∞
0

exp
(
− n2h2

8mL2kT

)
dn =

(
2πmkT
h2

) 1
2

L

where approximating the lower n = 1 in the sum by n = 0 in the integral is
not going to make the approximation any worse (only one more level is added to
many), and in the last step, a standard Gaussian integration was carried out.

By extension, the 3D translational partition function is given by

qtrans,3D =
(

2πmkT
h2

) 3
2

L3 =
(

2πmkT
h2

) 3
2

V

Defining de Broglie thermal wavelength (units of length of course!) as

Λ = h√
2πmkT

,

(29)
we can write the translational molecular partition function, in 3D, as

qtrans = V

Λ3
(30)

Note that by approximating the sum by an integral, we are ignoring any con-
tributions from quantum effects. As a result, if you use the translational par-
tition function Eq. (30) above and substituting it into the energy expression
E = kT 2(∂ lnQ/∂T )V , you would obtain the energy contribution from classical
equipartition theorem, i.e., you would find Etrans = 3

2kT .
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4.2. Rotation. The quantum mechanical model for rotation is the rigid rotor
model. In 3D, the full Schrödinger equation for this system is

Ĥψ =
(
Ĵ2

2I + V̂

)
ψ = Ĵ2

2I ψ = Eψ (31)

where the potential V is zero, I is the moment of inertia and I = µr2 for a
diatomic and I = ∑

imir
2
i for a polyatomic. We consider only diatomic and linear

polyatomics here. Ĵ2 is angular momentum operator and is given, in spherical
polar coordinates, by

Ĵ2 = −h̄2
(

1
sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)
Note that the eigenfunctions of the rigid rotor are also the spherical harmonics,
YJMJ

.
We can solve this differential equation (see here for the maths if interested) to

get the energy for the rigid rotor, but it is enough to know that
Ĵ2 YJMJ

= h̄2J(J + 1)YJMJ
(32)

so that the energy E in the Schrödinger equation Eq. (31) is given by

EJ = h̄2

2I J(J + 1) = BJ(J + 1)
(33)

where B = h̄2/(2I) is the rotational constant. The degeneracy of each rotational
energy level J is given by gJ = 2J + 1 due to the number of possible MJ values,
therefore, the rotational molecular partition function is given by

qrot =
∞∑
J=0

(2J + 1)e−βEJ =
∞∑
J=0

(2J + 1)e−βBJ(J+1) (34)

If at temperature T , the thermal energy kT is much greater than the rotational
energy level spacings (some multiple of the rotational constant), we can assume
that many rotational levels are assessible, in which case we can approximate the
sum above by an integral. We then have

qrot =
∞∑
J=0

(2J + 1)e−βBJ(J+1) '
∫ ∞

0
(2J + 1) exp

(
−BJ(J + 1)

kT

)
dJ = kT

B

We can now define a rotational temperature (units of temperature of course!):

θrot = B

k
(35)
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so that the rotational partition function can now be written as

qrot = T

σθrot
(36)

where σ is a symmetry parameter that arises from nuclear spin statistics (see later).
Again, by approximating the sum as an integral, we obtain the classical results.

It is important to note that this approximation is valid only when the number
of accessible states is much greater than 1. If the temperature T is very low, it
is possible that not many rotational levels are thermally accessible, so that the
rotational partition function Eq. (34) must be evaluated term by term.

Aside

For polyatomics, the rotational partition function using integral ap-
proximation is more complex, and is given by

qrot = π
1
2

σ

(
T 3

θrot,a θrot,b θrot,c

)
where each rotational temperature is defined via its associated rotational con-
stant and moment of inertia:

θrot,a = Ã

k
where Ã = h

8π2c̃Ia
and so on.

4.3. Vibration. The quantum mechanical model for a vibrating bond is the sim-
ple harmonic oscillator (SHO). The energies are given by

Ev =
(
v + 1

2

)
h̄ω =

(
v + 1

2

)
hν (37)

where v is the vibrational quantum number and ν is the vibrational frequency, ω
is the angular frequency.

The vibrational partition function is given by (each vibrational level is non-
degenerate):

qvib =
∞∑
v=0

e−β(v+1/2)hν = e−1/2βhν

1− e−βhν = e−hν/(2kT )

1− e−hν/(kT ) = e−E0/(kT ) q′vib (38)

where E0 = 1
2hν is the zero-point energy and q′vib = (1−e−βhν)−1 is the vibrational

partition function taking the vibrational ground state as energy zero. Note that
11



Statistical Mechanics ZHANG XINGLONG

this expression is exact (we used the sum of an infinite geometric series), within
the SHO model.

We can define a vibrational temperature as

θvib = hν

k
(39)

so that the partition function can be written as

qvib = e−θvib/(2T )

1− e−θvib/T

(40)

4.4. Electronic. Except for the simple case of hydrogen atom, there is no quan-
tum mechanical model for the energies of electronic levels; these have to be deter-
mined experimentally, usually by spectroscopy. The electronic partition function
is simply given by

qelec =
∑
i

gi e
−βεelec,i (41)

Commonly, the electronic excited states lie much higher in energy than the
ground state such that they are thermally inaccessible and does not contribute to
the electronic partition function. This occurs when the energy spacing between
the electronic states is much larger than kT . In those cases, only the ground state
is accessible, resulting in

qelec = g0 e
−βεelec,0 (42)

where g0 is the degeneracy of the ground state. If we take the electronic ground
state as energy zero, then, we have q′elec = g0 .

4.5. An illustration. Now, we have all the ingredients for finding any thermo-
dynamic quantity from the molecular partition function of the system. Consider
the entropy of an ideal monoatomic gas. The molecular partition function of a
monoatomic gas is given by q = qtrans qelec. The translational partition function,
qtrans, is given by Eq. (30). Assuming only the electronic ground state is ther-
mally accessible, the electronic partition function is given by Eq. (42), so that the
whole molecular partition function is now q = qtrans qelec = (V/Λ3)g0 e

−βε0 where
ε0 = εelec,0 is the ground electronic energy. As these molecules are indistinguish-
able, we need to substitute the molecular partition function into Eq. (25). The
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entropy of this system is thus,

S = NkT

(
∂ ln q
∂T

)
V

+Nk ln
(
q e

N

)

= NkT

(
∂

∂T
ln
(
V g0 e

−βε0

Λ3

))
V

+Nk ln
(
V g0 e

−βε0 e

NΛ3

)

= NkT

(
∂

∂T

[
ln
(
V g0

Λ3

)
+ ln e−βε0

])
V

+Nk
[
ln
(
V g0 e

NΛ3

)
+ ln e−βε0

]

= NkT

(
∂

∂T

[
ln
(
V g0

Λ3

)
− ε0

kT

])
V

+Nk
[
ln
(
V g0 e

NΛ3

)
− ε0

kT

]

= NkT

[
−3

(
∂ ln Λ
∂T

)
V

+ ε0

kT 2

]
+Nk ln

(
V g0 e

NΛ3

)
− Nε0

T

= −3NkT
(
∂ ln Λ
∂T

)
V

+Nk ln
(
V g0 e

NΛ3

)

= −3NkT
(
∂ lnαT−1/2

∂T

)
V

+Nk ln
(
V g0 e

NΛ3

)

= 3
2Nk +Nk ln

(
V g0 e

NΛ3

)
= Nk ln

(
e5/2 g0 V

NΛ3

)
(43)

where Λ is the thermal wavelength Eq. (29) and α = h/
√

2πmk is a temperature-
independent constant. This equation above is the Sackur-Tetrode equation.
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