
HERMITIAN OPERATORS

1. Dirac Notation

We first introduce a notation that is due to Dirac. The idea is to reduce nota-
tional clutter and give more prominence to the labels identifying the wavefunctions.

In this notation, a ket |n⟩ is used for the wavefunction ψn. A bra ⟨n| is used
to denote the complex conjugate of the wavefunction, ψ∗

n. A complete bra-ket
notation, such as ⟨n|n⟩ or ⟨n|Q̂|n⟩, implies integration over all space. For example,
we have

⟨n|n⟩ =
∫
ψ∗

nψndτ

⟨n|Q̂|n⟩ =
∫
ψ∗

nQ̂ψndτ

2. Hermiticity

Every operator Q̂ has a Hermitian conjugate, conventionally denoted Q̂†, which
has the following property for any two wavefunctions ψm and ψn satisfying the
boundary conditions for the system:∫

ψ∗
mQ̂ψndτ =

∫
(Q̂†ψm)∗ψndτ (1)

We can write the above using Dirac notation as

⟨m| Q̂ |n⟩ =
〈
Q̂†m

∣∣∣n〉
. (2)

An operator is Hermitian if it is equal to its Hermitian conjugate, i.e., Q̂ = Q̂†,
such that Eq. (1) becomes∫

ψ∗
mQ̂ψndτ =

∫
(Q̂ψm)∗ψndτ (3)

We note the following useful properties. If the operator Q̂ is Hermitian, then

⟨m| Q̂ |n⟩ =
∫
ψ∗

mQ̂ψndτ =
∫

(Q̂ψm)∗ψndτ =
(∫

ψ∗
nQ̂ψmdτ

)∗
= ⟨n| Q̂ |m⟩∗ (4)

Similarly,
⟨m|n⟩ =

∫
ψ∗

mψndτ =
(∫

ψ∗
nψmdτ

)∗
= ⟨n|m⟩∗ (5)
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3. Properties of Hermitian operators

Any Hermitian operator has the following properties:

(1) their eigenvalues are always real.
(2) eigenfunctions corresponding to different eigenvalues are orthogonal.

Proof: Suppose we have two eigenfunctions of a Hermitian operator Q̂ such that

Q̂ |m⟩ = qm |m⟩ (6)
Q̂ |n⟩ = qn |n⟩ (7)

We can pre-multipy Eq. (6) by ψ∗
n and Eq. (7) by ψ∗

m, and integrate over all
space to obtain

⟨n| Q̂ |m⟩ = qm ⟨n|m⟩ (8)
⟨m| Q̂ |n⟩ = qn ⟨m|n⟩ (9)

Taking the complex conjugate of Eq. (8), we get

⟨n| Q̂ |m⟩∗ = q∗
m ⟨n|m⟩∗ (10)

Now, using the properties in Eqs. (4) and (5), the above becomes

⟨m| Q̂ |n⟩ = q∗
m ⟨m|n⟩ (11)

Subtracting the above from Eq. (9), we have

0 = (qn − q∗
m) ⟨m|n⟩ (12)

We can now deduce the following:

(1) If m = n, then ⟨m|n⟩ = ⟨n|n⟩ ̸= 0, so that qn = q∗
n, therefore, qn is real.

(2) If qm ̸= qn, then since both are real, thus (qn − q∗
m) ̸= 0, therefore, ⟨m|n⟩ =

0, i.e., the wavefunctions ψm and ψn, corresponding to different eigenvalues,
are orthogonal.

We can therefore note that in quantum mechanics, any physical property is
represented by a Hermitian operator since the measurement of the corresponding
physical property must be real. Conversely, if an operator is not Hermitian, it
cannot correspond to any physical property as its eigenvalues are not guaranteed
to be real.
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4. Completeness Relation

The completeness relation is a cornerstone of quantum mechanics and linear
algebra. At its core, it’s a statement about the ability of a set of vectors to fully
describe a vector space. In a finite K-dimension, a “completeness relation” for a
set of vectors |ψn⟩ refers to the following relation

K∑
n=1

|ψn⟩ ⟨ψn| = 1̂, (13)

where the right hand side is the unit or identity operator. Each term |ψn⟩ ⟨ψn|
is a projection operator, which extracts the component of a vector along |ψn⟩.
Summing these projectors over all K basis vectors yields the identity operator,
meaning that for any vector |ϕ⟩ in the space:

|ϕ⟩ =
K∑

n=1
|ψn⟩ ⟨ψn|ϕ⟩. (14)

This reconstruction works because the projections collectively account for every
direction in the K-dimensional space, ensuring no part of the space is inaccessible.
In other words, the completeness relation guarantees that the set {|ψn⟩} includes
enough and right vectors to span the entire space without omission, a property
ensured by having exactly K orthonormal vectors in a K-dimensional space.

4.1. Implications in Quantum Chemistry. The completeness relation is fun-
damental in quantum mechanics:

• Resolution of Identity: It allows any wavefunction to be expanded in the
basis, e.g., |Ψ⟩ = ∑

n cn |ψn⟩, where cn = ⟨ψn|Ψ⟩.
• Matrix Elements: For an operator Â, the matrix representation is Aij =

⟨ψi|Â|ψj⟩, and completeness ensures all contributions are captured. Wave
mechanics and matrix mechanics are equivalent.

• Degenerate Subspaces: Within an mi-dimensional eigenspace, the mi or-
thonormal vectors satisfy a local completeness relation, e.g., ∑mi

n=1 |ψn⟩ ⟨ψn| =
1̂mi

, the identity on that subspace.

In quantum chemistry, this underpins methods like spectral decomposition of the
Hamiltonian or computing expectation values, ensuring the basis fully describes
the system.

5. Degenerate eigenvalues

When eigenvalues are degenerate, the eigenvectors associated with a single eigen-
value form an eigenspace of dimension equal to the multiplicity of that eigenvalue
(number of times that the same eigenvalue repeats). Within this eigenspace, the
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eigenvectors are not naturally orthogonal—they are just linearly independent (and
even then, only if chosen appropriately). For example, if an eigenvalue λ has a
multiplicity 3, its eigenspace is 3-dimensional, and we can pick any basis of 3
linearly independent vectors for it.

Now, consider a K-dimensional vector space and a matrix A (e.g., a Hamiltonian
operator) with A eigenvectors consisting of the following:

• M eigenvectors, corresponding to degenerate eigenvalues.
• K −M eigenvectors, each with a unique eigenvalue (multiplicity 1).

We can create an orthonormal basis spanning the full space, i.e., to satisfy the
completeness relation. For the Hermitian matrix A, the eigenvectors corresponding
to distinct eigenvalues are automatically orthogonal. So, these K −M vectors are
orthogonal to each other. However, they are not necessarily orthogonal to the
M vectors with degenerate eigenvalues, and none of them are guaranteed to be
normalized.

5.1. Gram-Schmidt process. The Gram-Schmidt process transforms a set of
linearly independent vectors {v1, v2, . . . , vn} into an orthonormal set {u1, u2, . . . , un},
where:

u1 = v1

∥v1∥
, uk =

vk − ∑k−1
j=1⟨uj, vk⟩uj∥∥∥vk − ∑k−1
j=1⟨uj, vk⟩uj

∥∥∥ , k = 2, . . . , n.

Thus, to form an orthonormal basis for the entire K-dimensional vector space,
we need to

(1) Orthogonalize within degenerate eigenspaces: Apply Gram-Schmidt
to the M eigenvectors, grouped by their eigenvalues. If all M vectors cor-
respond to one degenerate eigenvalue of multiplicity m, you orthogonalize
all M vectors together. If they split across multiple eigenvalues, do it
separately for each eigenspace.

(2) Combine with the K −M vectors: Take the resulting M orthonormal
vectors and the K −M vectors as a set of K vectors.

(3) Full Gram-Schmidt: Since the K−M vectors (with unique eigenvalues)
may not be orthogonal to the M vectors, apply Gram-Schmidt to the entire
set of K vectors, ensuring the process respects the eigenspaces:

• Start with the M orthonormal vectors from step 1.
• For each of the K − M vectors, subtract their projections onto all

previous vectors (including the M ones) and normalize.

5.2. Assumptions. This process assumes:
©Xinglong Zhang 2017 4



Hermitian Operators ZHANG XINGLONG

• A is diagonalizable with K linearly independent eigenvectors (true for Her-
mitian matrices). If A is not diagonalizable, we might not have enough
eigenvectors.

• For degenerate eigenvalues, Gram-Schmidt handles degeneracy within eigenspaces,
but the K −M vectors must have distinct eigenvalues.

• The initial M vectors span their eigenspaces properly, i.e., they are linearly
independent.

6. Implications of Completeness Relations in Quantum Chemistry

6.1. Quantum Mechanical Context. In quantum chemistry, the Hamiltonian
Ĥ governs a molecular system, and its eigenfunctions (wavefunctions) correspond
to energy states. These eigenfunctions may be:

• Molecular orbitals in Hartree-Fock or DFT.
• Multi-electron wavefunctions in configuration interaction (CI).

Degeneracies arise from molecular symmetry (e.g., p-orbitals in atoms or t2g or-
bitals in octahedral complexes). An orthonormal basis is crucial for computation
and physical interpretation.

6.2. Key Implications.

6.2.1. Orthonormality in Calculations. Orthonormal bases simplify quantum chem-
ical computations:

• Overlap integrals become ⟨ψi|ψj⟩ = δij.
• In a non-orthogonal basis, we solve Hc = ESc (generalized eigenvalue

problem). Orthogonalization yields H′c = Ec, reducing complexity.

For degenerate states (e.g., eg orbitals in benzene), Gram-Schmidt ensures or-
thonormality within the subspace, aiding methods like CI or perturbation theory.

6.2.2. Symmetry and Degeneracy. Molecular symmetry leads to degenerate energy
levels. For example:

• InH-atom, 2px, 2py, 2pz are degenerate; Gram-Schmidt orthogonalizes them.
• In methane (Td), t2 orbitals are triply degenerate.

Orthogonalizing within these subspaces respects symmetry and prepares the basis
for perturbations (e.g., Jahn-Teller effects).
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6.2.3. Physical Interpretability. Orthonormality aligns with quantum mechanics’
probabilistic nature:

|⟨ψi|ψj⟩|2= δij,

ensuring distinct states are separable. This clarity is vital for electron density or
spectroscopic predictions.

6.2.4. Perturbation Theory. In degenerate perturbation theory, an orthonormal
zeroth-order basis is required to compute corrections when degeneracy is lifted
(e.g., by an external field). The M degenerate vectors, once orthonomalized, pro-
vide this foundation.
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