HUCKEL THEORY FOR SPECIAL SYSTEMS

1. The Hückel equation

Recall that the energy of a system is given by the expectation value of the Hamiltonian operator as

$$
\begin{equation*}
E=\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{1}
\end{equation*}
$$

The molecular orbital (MO) wavefunction, ψ, can be written as a linear combination of atomic orbitals, ϕ, as

$$
\begin{equation*}
\psi=\sum_{r} c_{r} \phi_{r} \tag{2}
\end{equation*}
$$

where ϕ_{r} is atomic orbital on atom r, c_{r} is the accompanying coefficient.

Substituting the above into the energy expression Eq. (1) and expanding the sum, we obtain

$$
\begin{align*}
E & =\frac{\sum_{r s} s_{r}^{*} c_{s} H_{r s}}{\sum_{r s} c_{r}^{*} c_{s} S_{r s}} \tag{3}\\
& =\frac{\sum_{r s} c_{r} c_{s} H_{r s}}{\sum_{r s} c_{r} c_{s} S_{r s}} \quad \text { (real orbitals) } \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& H_{r s}=\left\langle\phi_{r}\right| \hat{H}\left|\phi_{s}\right\rangle=H_{s r} \tag{5}\\
& S_{r s}=\left\langle\phi_{r} \mid \phi_{s}\right\rangle=S_{s r} \tag{6}
\end{align*}
$$

By the variational principle, we seek to minimize energy with respect to the coefficients c_{r} so that the first derivative with respect to c_{r} all vanish, i.e.,

$$
\begin{equation*}
\frac{\partial E}{\partial c_{r}}=0 \tag{7}
\end{equation*}
$$

After a fairly straightforward exercise in partial differentiation (try this!), we obtain the following matrix equation:

$$
\begin{equation*}
\sum_{s}\left(H_{r s}-E S_{r s}\right) c_{s}=0 \tag{8}
\end{equation*}
$$

Now, applying the following Hückel approximations

$$
\begin{align*}
& H_{r s}= \begin{cases}\alpha, & \text { if } r=s \\
\beta, & \text { if } r \neq s \\
0, & \text { otherwise }\end{cases} \tag{9}\\
& S_{r s}= \begin{cases}1, & \text { if } r=s \\
0, & \text { otherwise }\end{cases} \tag{10}
\end{align*}
$$

and we can immediately see that a row in the Hückel equation becomes (think of this by fixing one value of i and summing over all j values and applying the Hückel approximations in Eqs. (9) and (10)):

$$
\begin{equation*}
\left(\alpha-E_{n}\right) c_{r}^{(n)}+\beta\left(c_{r+1}^{(n)}+c_{r-1}^{(n)}\right)=0 \tag{11}
\end{equation*}
$$

where we have added a superscript n to denote the $n^{\text {th }}$ number of molecular orbital that we are referring to.

2. Rings of arbitrary length

Consider a cyclic polyene ring of N atomic sites (Fig. 11). Note that site r is connected to sites $r-1$ and $r+1$. We now aim to solve a row in the Hückel equation Eq. (11).

Figure 1. A cyclic polyene ring of N atomic sites.

For this particular system, the cyclic boundary condition is given by

$$
\begin{equation*}
c_{r}^{(n)}=c_{N+r}^{(n)} \tag{12}
\end{equation*}
$$

since the wavefunction must be single-valued.

We will proceed by guessing the following solution, which satisfies the boundary condition, to Eq. 111:

$$
\begin{equation*}
c_{r}^{(n)}=e^{i 2 \pi n r / N} \tag{13}
\end{equation*}
$$

where we note again that, r denotes the atomic site and n the molecular orbital number.

Inserting this into Eq. (11), we have

$$
\begin{aligned}
0 & =\left(\alpha-E_{n}\right) e^{i 2 \pi n r / N}+\beta\left(e^{i 2 \pi n(r+1) / N}+e^{i 2 \pi n(r-1) / N}\right) \\
& =\left(\alpha-E_{n}\right) e^{i 2 \pi n r / N}+\beta e^{i 2 \pi n r / N}\left(e^{i 2 \pi n / N}+e^{-i 2 \pi n / N}\right) \\
& =\left(\alpha-E_{n}\right)+\beta(2 \cos (2 \pi n / N))
\end{aligned}
$$

Thus, giving

$$
\begin{equation*}
E_{n}=\alpha+2 \beta \cos (2 \pi n / N) \tag{14}
\end{equation*}
$$

where $n=0, \pm 1, \pm 2, \ldots, N / 2$ for even- N or $n=0, \pm 1, \pm 2, \ldots, \pm(N-1) / 2$ for odd- N. There are always precisely N molecular orbitals. Since $\cos (x)$ is an even function, this implies that, apart from $n=0$ and $n=N / 2$, the energy levels come in degenerate pairs.

We now apply the normalization condition

$$
\begin{equation*}
\sum_{r}\left(c_{r}^{(n)}\right)^{*} c_{r}^{(n)}=1 \tag{15}
\end{equation*}
$$

to get the coefficients to the MOs

$$
\begin{equation*}
c_{r}^{(n)}=\frac{1}{\sqrt{N}} e^{i 2 \pi n r / N} \tag{16}
\end{equation*}
$$

3. Linear polyene chains

Now, consider a lienar polyene chain of length N (Fig. 2). Again, we wish to solve Eq. (11).
(C)Xinglong Zhang 2017

Figure 2. A linear polyene chain of N atomic sites.

The boundary condition is now given by

$$
\begin{equation*}
c_{0}^{(n)}=c_{N+1}^{(n)}=0 \tag{17}
\end{equation*}
$$

where we have set all the coefficients of all MOs "off-the-end" of the molecule to zero.

We now guess the following solution, again noting that it satisfies the boundary condition of the system:

$$
\begin{equation*}
c_{r}^{(n)}=\sin (n \pi r /(N+1)) \tag{18}
\end{equation*}
$$

Inserting this into Eq. (11), we have

$$
\begin{aligned}
& 0=\left(\alpha-E_{n}\right) \sin (n \pi r /(N+1))+\beta[\sin (n \pi(r+1) /(N+1))+\sin (n \pi(r-1) /(N+1))] \\
&=\left(\alpha-E_{n}\right) \sin (n \pi r /(N+1))+\beta[\sin (n \pi r /(N+1)) \cos (n \pi /(N+1)) \\
&+\sin (n \pi r /(N+1)) \cos (n \pi /(N+1))] \\
&=\left(\alpha-E_{n}\right)+\beta(2 \cos (n \pi /(N+1))
\end{aligned}
$$

where we have used the trigonometric compound angle formula for the terms in the square brackets.

Thus, we have

$$
\begin{equation*}
E_{n}=\alpha+2 \beta \cos (n \pi /(N+1)) \tag{19}
\end{equation*}
$$

where n runs from 1 to N. Note that the linear chain does not have the doubly degenerate energy levels characteristic of the cyclic systems.

We now apply the normalization condition

$$
\begin{equation*}
\sum_{r}\left(c_{r}^{(n)}\right)^{*} c_{r}^{(n)}=1 \tag{20}
\end{equation*}
$$

©Xinglong Zhang 2017
to get the coefficients to the MOs to obtain

$$
\begin{aligned}
\sum_{r}\left(c_{r}^{(n)}\right)^{*} c_{r}^{(n)} & =\sum_{r} \sin ^{2}\left(\frac{n \pi r}{N+1}\right) \\
& =\frac{1}{2} \sum_{r=1}^{N}\left(1-\cos \left(\frac{2 n \pi r}{N+1}\right)\right. \\
& =\frac{1}{2}\left[N-\sum_{r=1}^{N} \cos \left(\frac{2 n \pi r}{N+1}\right)\right] \\
& =\frac{1}{2}\left[N+1-\sum_{r=0}^{N} \cos \left(\frac{2 n \pi r}{N+1}\right)\right] \\
& =\frac{N+1}{2}
\end{aligned}
$$

where the last summation goes to zero as the "corresponding bits" cancel. Therefore, we have, for linear chain, the coefficients of $n^{\text {th }}$ MO is given by

$$
\begin{equation*}
c_{r}^{(n)}=\sqrt{\frac{2}{N+1}} \sin (n \pi r /(N+1)) \tag{21}
\end{equation*}
$$

