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Never trust an experimental result until it has been 
confirmed by theory.  

–– Arthur Stanley Eddington 

 

1 
Theoretical Background 

 

1.1 Computational Chemistry 

Computational chemistry is a branch of chemistry where theoretical study of physics and 

chemistry are implemented in computer programs to simulate and understand chemical 

reactions that occur both in laboratory settings and in biological systems, using 

techniques ranging from kinetics and thermodynamics calculations, electronic structure 

analysis and spectroscopy simulations, amongst many others. Within this field, computer 

simulations are routinely used to understand and explain chemical reactivity; in some 

cases, these simulations can predict remarkable and hitherto unperceived chemical 

phenomena.
1–3

 Today, computational chemistry has become an indispensable tool in 

understanding reaction mechanisms in chemical reactions and catalysis.
4,5

 The advent 

and continued development of computational chemistry has been fuelled by paralleled 

development in theoretical methods and computational architecture. We should note that 

computational chemistry is different from theoretical chemistry in that it concerns solving 
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chemical problems, not directly developing new theoretical techniques. The development 

of theoretical methods allows new chemical problems to be studied, whereas calculations 

and insights obtained from computational chemistry can pinpoint the limitations of theory 

and suggest new areas for further theoretical development. 

One of the practical considerations in computational chemistry is that any method 

employed to study a chemical system is constrained by a compromise between accuracy 

and cost. In general, the more accurate the methodology, or model chemistry, the more 

costly it is computationally, although highly parametrised low-cost methods can 

sometimes obtain this accuracy. A variety of computational methods are available for the 

study of a range of chemical systems of varying sizes to different degrees of desired 

accuracy. These methods can be broadly divided into quantum mechanical methods and 

classical mechanical methods. Quantum mechanical methods aim to understand the 

electronic structure of a chemical system and include ab initio methods based entirely on 

solving the governing equations in quantum mechanics, without any experimental data 

input; semi-empirical methods include additional parameters from empirical data for 

better speed/accuracy in the study of large systems. For even larger systems and where 

dynamical effects are important, classical mechanical methods based on numerically 

solving the Newton’s equations of motion are employed. Examples of popular quantum 

mechanical methods include density functional theory (DFT) methods and examples of 

classical mechanical methods include molecular mechanics (MM) – a form of empirical 

potential governing the interactions between the atoms of a molecular system – used in 

molecular dynamics (MD) simulations.  
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1.2 Quantum Mechanics 

As all endeavours in science, quantum mechanics (QM) developed when existing theory 

could not adequately explain the experimental observations. Classical mechanics provide 

the physical laws governing the motion and properties of macroscopic systems. However, 

a series of observations made in the 19
th

 and 20
th

 centuries concerning systems of atomic 

and subatomic scale could not be reconciled with classical laws. These observations, such 

as the discovery of cathode rays (Faraday, 1838), the black-body radiation problem 

(Kirchhoff, 1859) and the photoelectric effect (Hertz, 1887), called for new theoretical 

framework governing phenomena at the atomic scale. In 1900, in a radical proposal, Max 

Planck first suggested that the energies emitted by an atomic system come in discrete 

values, i.e., they are quantised. Then in 1905, in an attempt to explain the photoelectric 

effect, Einstein proposed, in consistency with Planck, that light is made up of discrete 

particles, later on termed photons, with quantised energy. As the development of QM 

progressed, it became clear that not only is light quantised, but also are electrons and 

atoms. Early contributions from de Broglie, Schrödinger, Heisenberg, Born and others 

underlie the foundations of theory for modern computational chemistry. 

1.2.1 The Schrödinger equation 

A chemical system can be described exactly by the time-dependent Schrödinger equation 

(TDSE): 

 

(1.1) 

where  is the Hamiltonian operator, whose measurements yield the total energy of the 

system;  is the time-dependent wavefunction of the system, whose squared 

modulus, , gives the probability density of finding a particle 

Ĥ (X, t) = i~ @

@t
 (X, t)

Ĥ

 (X, t)

| (X, t)|2 =  ⇤(X, t) (X, t)
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at position X (X is a collection of positions of electrons, at r, and nuclei, at R) at time t. 

For time-independent physical and chemical properties, the solution of the time-

independent Schrödinger equation (TISE) 

 (1.2) 

 is desired.  

This is an eigenvalue problem where the eigenfunction is the wavefunction of the system, 

, and the eigenvalue is the energy of the system, E. The solution of the TISE cannot be 

obtained exactly except for the simplest, single-electron systems. For a multi-electronic 

system with N electrons, at position vectors ri’s, and M nuclei, at position vectors RA’s, 

the Hamiltonian of the system, in atomic units, is given by  

 

(1.3) 

where  is the distance between ith
 electron and Ath

 nucleus, 

 is the distance between ith
 electron and jth

 electron,  is 

the distance between Ath
 nucleus and Bth

 nucleus; MA and ZA are the atomic mass and 

charge of nucleus A, respectively. The five terms in the total Hamiltonian represent, 

respectively, the kinetic energy of the electrons, the kinetic energy of the nuclei, the 

Coulomb attraction between the electrons and nuclei, the electron-electron repulsion and 

the nucleus-nucleus repulsion. Thus, the total Hamiltonian operator can be written as a 

sum of the operators for each of these separate contributions, viz.,  

 (1.4) 
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1.2.2 The Born-Oppenheimer approximation 

The full Hamiltonian for a molecular system given in Equation (1.3) makes the TISE in 

Equation (1.2) difficult to be solvable without a number of approximations; the presence 

of electron-nuclei interactions, , makes the Hamiltonian inseparable into electronic 

and nuclear degrees of freedom. One of the most fundamental approximations employed 

is the Born-Oppenheimer (BO) approximation.
6
 The validity of this approximation rests 

on the fact that the mass of a nuclei is much larger than the mass of an electron (1 a.m.u. 

= 1836 me), such that their motions can be separately treated. Within the BO 

approximation, the nuclei of the system are considered “clamped” in positions; the 

electrons move in this “clamped-nuclei” framework. By having the nuclei fixed, the 

nuclear kinetic energy (second term of Equation (1.3)) can be neglected ( ); in 

addition, the nucleus-nucleus repulsion can be considered as a constant at fixed nuclear 

positions R ( ). With these simplifications, the Hamiltonian in Equation 

(1.3) becomes 

 

(1.5) 

which is the Hamiltonian describing the motion of N electrons in the field of M fixed 

nuclear charges. The constant nucleus-nucleus repulsion, Vnn, is frequently neglected 

since it is just a constant within the BO approximation and that adding a constant to a 

quantum operator just shifts the eigenvalues and does not change the eigenfunctions, i.e., 

the representation of the system is unaffected. The electronic Hamiltonian is then given 

by  

V̂ne

T̂n = 0

V̂nn = Vnn(R)
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(1.6) 

such that the electronic Schrödinger equation is now  

 (1.7) 

where the electronic wavefunction  depends on the positions of electrons and 

the fixed nuclear coordinates. The total energy of the full molecular system, at the fixed 

nuclear positions, R, includes the constant nuclear repulsion and is given by 

 (1.8) 

By varying the nuclear positions and solving the electronic SE, we are able to arrive at 

the total energy of the system at different nuclear positions (Equation (1.8)). This total 

energy, with parametric dependence on the nuclear positions, provides a potential for the 

nuclear motion. This gives rise to the concept of potential energy surface (PES), which 

is the electronic energy of the system over the nuclear coordinates, . The nuclear 

motion can now be solved, with the nuclear Hamiltonian for the motion of nuclei in the 

field of the electrons given by 

 

(1.9) 

and with the nuclear SE given by 

 (1.10) 
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The BO approximated total energy is given by E from Equation (1.10). As a result of this 

separation, the total molecular wavefunction of the system, , can be written as a product 

of the electronic wavefunction and the nuclear wavefunction, as  

 (1.11) 

We focus on solving the electronic TISE given in Equation (1.7). 

1.2.3 Quantum mechanical measurements 

For any physical observable Q, there is a corresponding Hermitian quantum operator  

giving the measurement of the observable. The Hermiticity of the operator ensures that 

the measured physical observable of a system, represented by the wavefunction , is real, 

as is necessary for being physically sound. The mean value of the observable Q in a series 

of measurements is given by the expectation value of the corresponding operator , via 

the formula, 

 

(1.12) 

Therefore, if the quantum operator is the total Hamiltonian, then, the total energy of the 

system is the expectation value of the Hamiltonian, given by 

 

(1.13) 

1.2.4 The variational principle 

The exact solution of the TISE is possible only for a limited number of systems. In cases 

where the exact solutions are not available, we can find approximate wavefunctions to 

the system. In many cases, we are interested in the ground state of a system, represented 
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by the wavefunction , with ground state energy E0. The variational principle asserts 

that for an arbitrary trial wavefunction  satisfying the boundary conditions for a system, 

the expectation value of its energy  provides an upper bound to the lowest eigenvalue 

of the Hamiltonian, the true ground state energy E0. That is, we have  

 

(1.14) 

In general, the flexibility of the trial wavefunction can be increased by including in it an 

adjustable parameter or parameters, so that the energy of the trial wavefunction can be 

further refined by minimising the trial energy with respect to those parameters. The 

variational principle (Equation (1.14)) implies that any approximate wavefunction to the 

true ground state wavefunction will yield an expectation energy that is higher than or 

equal to the true ground state energy; equality is satisfied when the trial wavefunction is 

exactly the same as the ground state wavefunction. 

1.2.5 Linear variation method and the secular equations 

Given that we do not have the eigenfunctions of the true Hamiltonian, we can write the 

trial wavefunction  as a linear combination of N independent functions  (often the 

atomic orbitals),  

 

(1.15) 
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(1.16) 

which can be rearranged to  

. 

(1.17) 

To minimise the energy with respect to the coefficients ci’s, we take the partial derivative 

of Equation (1.17) with respect to the coefficient ck and require that  
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so that we arrive at  
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Equation (1.19) are the secular equations of the system. In matrix form, this is 

 (1.20) 
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X

j

cjSkj = 2
X

j

cjHkj

=)
X

j
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1.2.6 Spin-statistics theorem and Pauli exclusion principle 

Due to the indistinguishability of quantum particles, the exchange of labels on any two 

identical  particles should preserve the probability density of the system. This observation 

is encapsulated by spin-statistics theorem, which states that, in exchanging two identical 

particles (both space and spin coordinates), the total wavefunction is antisymmetric (sign 

change) for fermions and symmetric (no sign change) for bosons.  

Since electrons are fermions, the exchange of two identical electrons requires that the 

total wavefunction of the system changes sign, viz., 

. (1.21) 

where  is the exchange/permutation operator. The probability density of the system is 

preserved since the probability of finding an electron is given by the square modulus of 

the total wavefunction and is thus not affected by the sign change, that is 

. (1.22) 

The Pauli exclusion principle, which states that no two or more identical fermions can 

occupy the same quantum state, follows immediately: if we have two fermions in the 

same state (same spatial and spin coordinates), then, r2 = r1= r, Equation (1.21) then 

becomes , resulting in no such 

wavefunction. 

1.2.7 Spin orbitals, Hartree product and Slater determinants 

A spin orbital  is a wavefunction for an electron containing a spatial orbital , 

which is a function of the position vector of the electron at r, multiplied by the spin of 

the electron . The coordinate X is a collection of individual space coordinates r and 
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the associated spin coordinates. Mathematically,  where the electron 

spin takes either spin up (α) or spin down (β). Each spin orbital can accommodate one 

electron, since, no two electrons can have the same four quantum numbers, as a 

consequence of Pauli exclusion principle. 

For a system with N electrons, we can construct a many-electron wavefunction called the 

Hartree product , which is a product of individual particle wavefunctions, i.e., a 

product of spin orbitals. Mathematically,  

. (1.23) 

The Hartree product is a mean-field wavefunction where the individual electrons are 

assumed to be non-interacting; it is an uncorrelated wavefunction. The Hartree product 

suffers the deficiency that it does not conform to the antisymmetry of the overall wave-

function under the exchange of electron labels, i.e., it violates the Pauli principle. 

We can obtain the correct antisymmetric wavefunction of the N-electron system, called a 

Slater determinant, , from the Hartree product, , by applying an antisymmetriser 

operator, , to it. That is, we have  

 , (1.24) 

where the antisymmetriser operator is defined as 

. 

(1.25) 

 is a permutation operator that permutes the coordinates in the Hartree product;  is 
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even/odd. Applying the antisymmetriser on the Hartree product leads us to the Slater 

determinant, viz.,  

 

(1.26) 

The Slater determinant is correctly antisymmetrised and satisfies the antisymmetry and 

Pauli exclusion principles since, for example, exchanging the electron labels for any two 

rows or columns results in sign change, and that having any two electron labels the same 

results in a vanishing determinant. It can be shown that
7
 for a single Slater determinantal 

description of an N-electron system, the motion of electrons of parallel spins is correlated 

(electron exchange) but the motion of electrons of opposite spins is uncorrelated. 

1.3 Basis sets 

A basis set is a collection of known vectors/functions used to span a vector/Hilbert space. 

The simplest example of a basis set is the collection of unit vectors, , which spans 

the Euclidean 3D space. In other words, any vector in space can be represented as a linear 

combination of the unit vectors. Similarly, in quantum chemistry, a basis set is a 

collection of known functions, usually one-particle functions such as the atomic orbitals 

(AOs), used to represent the molecular orbitals (MOs) of a system of interest. The MOs 

can be written as a linear combination of AOs where their coefficients can be variationally 

determined. In almost all quantum chemical calculations, a finite set of basis functions is 

used. If the finite basis set is expanded toward completeness of an infinite basis set, then 

calculations using such an infinite basis set are said to approach the basis set limit.  
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1.3.1 Slater-type orbitals vs Gaussian-type orbitals 

There are two types of basis functions in quantum chemistry. The Slater-type orbitals 

(STOs; named after John C. Slater) are similar to the eigenfunctions of the hydrogen atom 

and have the following functional form,  

 
(1.27) 

where N is a normalisation constant, Yl,m are the spherical harmonics; the radial part is 

given by rn-1
, with ζ the Slater exponent that controls the width of the orbital. Note the 

exponential dependence on r. Since the STOs have resemblance to the hydrogen atomic 

orbitals, they are naturally good for molecular orbitals. In addition, they have the correct 

behaviours at short ( ) and long ( ) ranges. However, the evaluation of 

integrals using these STOs are difficult and computationally resource-consuming. 

An alternative and much more popular type of basis set employed in quantum chemistry 

is the Gaussian-type orbitals (GTOs; first proposed by Francis Boys). The functional 

forms of the GTOs are given below, 

 

(1.28) 

where α is the Gaussian orbital exponent that controls the width of the GTOs (the larger 

the value of α, the more contracted the GTO is) and lx, ly and lz are non-negative integers. 

The sum of these numbers, l = lx + ly + lz, is analogous to the angular momentum quantum 

number and gives an indication of the type of functions as s-type (l = 0), p-type (l = 1), 

d-type (l = 2) etc. The GTOs have the advantage that they are simpler to handle than 

STOs computationally since the calculation of multi-centre electron repulsion integrals 
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are easier using GTOs due to the Gaussian product theorem (the product of two Gaussians 

at different centres is another Gaussian at a new centre). The GTOs, however, have 

incorrect behaviours both at short ( ; no nuclear cusp) and long ( ; too fast 

decay) ranges. To overcome these shortcomings, a number of GTOs (primitives) are 

commonly taken as a linear combination to create contracted Gaussian functions (CGFs) 

to resemble the STOs as much as possible: 

 

(1.29) 

The CGFs are variationally optimised with respect to the Hartree-Fock (HF) energy of 

free atoms to produce an optimal set of contraction coefficients and Gaussian exponents 

of the primitives, which are then fixed. The optimised CGFs are the used to construct 

Gaussian-type basis sets. 

1.3.2 Single-ζ, multiple-ζ and split-valence basis sets  

A minimal basis set, or single-ζ basis set, is one where a single basis function is used for 

each orbital in a Hartree-Fock (vide infra) calculation on the free atom. The most common 

example of minimal basis set is STO-nG, first proposed by John Pople, where n Gaussian 

primitives are used to approximate a single STO. For example, an STO-3G basis function 

is a linear combination of 3 primitive Gaussian functions with the coefficients determined 

via a least square fit to the single STO. Using this basis set, a carbon atom, for example, 

will have only one STO-3G orbital for each of 1s, 2s and three 2p orbitals. This minimal 

basis set is generally considered to be insufficient for accurate representation of orbitals 

in quantum chemistry. 

R ! 0 R ! 1

�CGF =
X

i

ai�
GTO

i



15 
 
 

To increase the accuracy of orbital descriptions by the basis sets, two or more functions 

can be used to describe each type of orbital, giving rise to double-ζ (DZ), triple-ζ (TZ), 

and quadruple-ζ (QZ) basis sets. For example, a carbon atom with DZ basis set will 

have two functions for each of 1s, 2s and three 2p orbitals (1s, 1s’, 2s, 2s’ and two sets 

of p-functions 2p and 2p’). 

In chemical bonding, the core orbitals are only weakly affected whereas the valence 

orbitals can change substantially. The majority of chemistry is governed by the movement 

of valence electrons. It is therefore more computationally efficient to implement basis set 

that allows for a greater flexibility in the valence orbitals rather than the core orbitals. 

The split-valence (SV) basis set introduced by Pople aims to achieve this balance of 

flexibility and cost. In a SV basis set, single-ζ basis functions are used for core orbitals 

and double- and higher-ζ basis functions for valence orbitals. These SV basis sets are 

represented as n-ijG or n-ijkG where n is the number of Gaussian primitives used for the 

core shells; the numbers i, j, k are the numbers of Gaussian primitives used for 

contractions in the first, second and third STO of the valence shells, respectively. The ij 

notation is used for basis set of valence double-ζ (VDZ) quality (two functions for the 

valence orbitals) while the ijk notation is used for basis set of valence triple-ζ (VTZ) 

quality (three functions for the valence orbitals). For example, the split-valence triple-ζ 

basis set 6-311G uses 6 Gaussian functions to describe the core orbital, and respectively 

3, 1, 1 Gaussian function(s) for the first, second, third STO of the valence orbital. 

1.3.3 Polarisation functions  

The GTOs in the previous subsections are optimised by minimising the HF energy of the 

atoms. This gives the basis functions that have the same angular momentum l as those in 

atoms. However, during bonding in the formation of molecules, these atomic orbitals are 
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distorted. Under these situations, the s-orbital acquires p-character while the p-orbital 

acquires d-character and so on. These changes are not satisfactorily represented by the 

Gaussian AOs. To account for these orbital distortions upon molecular bonding, functions 

of higher angular momentum are usually added. These additional functions are called 

polarisation functions and when added to the basis set, is denoted by the letter “P”. Thus, 

DZP means double-ζ basis set with polarisation functions added. In the Pople-type basis 

sets, the polarisation functions are denoted by the parenthesis behind the basis set names, 

for example, in 6-31G(d,p) basis set, the notation “(d,p)” denotes that a set of d-orbital 

functions are added to the heavy atoms and that a set of p-orbital functions are added to 

the H atoms. 

The addition of polarisation functions removes the spherical symmetry of the AOs so that 

the basis set can give a better description of bonding environment. Polarisation functions 

introduce an additional node. For example, when polarisation is added to 1s AO of a 

hydrogen atom, a p-function is added; similarly, when polarisation is added to valence p-

orbitals, d-type functions are added to the basis set. For heavy atoms, higher angular 

momentum polarisation functions (d, f, …) may be important. In all calculations where 

electron correlation is important, it is necessary to include polarisation functions.  

1.3.4 Diffuse functions  

For anionic systems or systems in excited states, the electrons are usually loosely bound. 

This necessitates an accurate description of the wavefunction towards the tail region. 

Diffuse functions, having very small exponents and decaying more slowly with distance 

from the nucleus, are included to provide improved description of the tail region. These 

Gaussian functions are usually of s- and p-type functions and their inclusion allow better 

description of anions, weak bonds (e.g. hydrogen bonds) and calculation of properties 
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such as dipole moments and polarizabilities etc. The addition of diffuse functions to a 

Pople-type basis set is indicated by “+” in n-ij+G or n-ij++G where a single “+” indicates 

that one diffuse s-type and p-type Gaussian functions are added on heavy atoms and a 

double “++” indicates that on top of the functions added on heavy atoms in “+” basis set, 

an additional diffuse s-type Gaussian function is added on hydrogen atoms. 

1.3.5 Correlation-consistent (cc) basis sets 

Correlation-consistent (cc) basis sets are widely used basis sets developed by Dunning 

and co-workers
8–16

 for wavefunction-based calculations. They are primarily designed for 

correlated calculations and are optimised using correlated (CISD) wavefunctions. They 

are designed to converge systematically to the complete basis set (CBS) limit. These basis 

sets are denoted cc-pVXZ (X = D, T, Q, 5, 6, 7…) which means correlation-consistent, 

polarised valence, X-zeta basis. Additional set of tight functions with large exponents can 

be added to recover core-core and core-valence electron correlation, producing the cc-

pCVXZ basis sets (where C stands for core). A prefix “aug” can be added to show that a 

set of diffuse functions has been included for every angular momentum present in the 

basis set, therefore, aug-cc-pVDZ for C atom for example, has diffuse s, p, d functions 

added.  

1.3.6 Karlsruhe basis sets 

The basis sets discussed previously are rather expensive computationally (non-linear 

dependence) and suffer from basis set incompleteness if a finite basis set is used. The 

Karlsruhe basis sets provide an attractive alternative as they are property-optimised 

balanced basis sets of quality for all elements up to radon (Z = 86). These basis sets show 

similar convergence for SV, DZ, TZ and QZ quality and are more computationally 

economical.
17
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Def2-basis sets are examples of segmented contracted basis sets.
18,19

 These are designed 

for all the elements H-Rn for varying flexibility and accuracy. The basis sets are named 

def2-SV(P) to def2-QZVPP. They were tested for a set of ca. 300 molecules representing 

nearly all elements in nearly all common oxidation states and are designed to give similar 

errors for all the elements across the periodic table for a given basis set type. It is 

recommended that
18

 for DFT calculations, one uses def2-SV(P) basis sets to obtain 

qualitative results and def2-TZVP basis sets to obtain results close to DFT basis set limit. 

For similar accuracies in HF and MP2 and other post-HF calculations, larger polarisation 

sets are required and that def2-SVP and def2-TZVPP bases are recommended, for the 

above purposes respectively. For first-order property calculations, such as bond energies, 

using DFT, def2-TZVPP bases are recommended to approach the DFT basis set limit.
18

 

1.3.7 Effective core potentials  

For systems involving heavier elements such as those from the third period and beyond 

of the periodic table, there is a large number of core electrons for these elements. To reach 

a proper description of the valence electrons, a large number of basis functions are first 

required to describe the core electrons, which are relatively less important in chemical 

reactions. The situation is complicated by the increasing importance of relativistic effects 

for heavy elements. To overcome these problems, effective core potentials (ECP), also 

called pseudopotentials, are introduced to represent the chemically inert core electrons 

and capture the dominant effects of relativity. This has the advantage that the size of the 

basis set needed for the molecular description can be significantly reduced. The ECPs 

from Hay and Wadt, also called Los Alamos National Laboratory (LANL) ECPs
20,21

 

(non-relativistic for the first-row transition metals), is an example of popular ECPs in 

modern use.  
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1.3.8 Basis set superposition error  

Calculations of a molecular system using a finite (especially small) basis set are prone to 

basis set superposition error (BSSE).
22,23

 The interaction energy between two monomers 

A and B is given by the energy difference between the complex AB and the sum of the 

individual energy of A and B. As the two monomers A and B approach each other in the 

complex formation, the complex AB can be artificially stabilised as monomer A utilises 

the basis functions from monomer B and vice versa. Each monomer is able to access the 

basis functions on the other monomer at short, but not long, intermolecular distance. This 

differential treatment of monomers at varying intermolecular distances is the source of 

BSSE. In the event that BSSE can be eliminated by treating the monomers with same 

number of basis functions at different intermolecular distances, the system can still be 

subject to basis set incompleteness errors (BSIEs) due to the finite size of the basis set 

used.  

The Boys and Bernardi counterpoise correction (CP) is commonly used to remove 

BSSE.
24

 Briefly, the BSSE is calculated by additional calculations using the dimer basis 

for all species and subtracting the energy difference between the monomer in dimer basis 

and the monomer in monomer basis. 

1.3.9 Basis sets used in this thesis 

We used GTOs throughout this thesis. For systems where small organic molecules are 

involved (Chapters 2 and 3), we used a small Pople-type basis set for geometry 

optimisation. For example, in Chapter 2, we study the radical cationic system involving 

small organic molecules, we used a small basis set 6-31G(d) for geometry optimisation. 

For Chapter 3, in the study of hydroxyphosphine bifunctional catalyst, where hydrogen 

bonding and proton movements are potentially important, we used 6-31+G(d,p) basis set 
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for geometry optimisation. Here we added in diffuse functions for a better description of 

hydrogen bonding and additional polarisation functions for the hydrogen atom for better 

bonding description of the formation and breaking of O–H and N–H bonds. 

For the study of transition metal (TM) catalysed reactions (Chapters 4 to 7), the initial 

geometry optimisations were all performed with a small basis set of def2-SVP quality. 

The Karlsruhe basis set was chosen as it provides a balanced description of all elements, 

up to Rn, on the periodic table. The Pople basis sets were not used as these do not provide 

descriptions of elements beyond Kr (such as Pd, and Ir that we use in our catalytic 

system). For a finer geometry optimisation, we used a mixture of bases for the description 

of these organometallic systems. Typically, a larger basis set, such as def2-TZVPPD used 

for the TMs in this thesis, is needed to provide a sufficient description of the d-orbitals.
18

 

The diffused functions (indicated by the letter “D” in the basis name) are also included 

to better describe the second (e.g. Pd) and third row (e.g. Ir) TM p- and d-orbitals.
18

 

For single-point (SP) calculations, we generally use a large basis set from the Karlsruhe 

basis set family, such as def2-QZVPP, which provides a good description for all elements 

and yields a good accuracy. 

1.4 The Hartree-Fock or Self-Consistent Field Method 

The Hartree-Fock (HF) method is central to quantum chemistry. HF commonly serves as 

a starting point for more sophisticated methods such as those accounting for the effects 

of electron correlation. The underlying idea of HF is that a single Slater determinantal 

wavefunction can be used to approximate a multi-electronic system where electron-

electron interactions are treated in an average way.  
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1.4.1 Hartree-Fock equations 

For an N-electron system, we can use a single Slater determinant of the form in Equation 

(1.26) to approximate the ground state wavefunction. We aim to minimise the electronic 

energy to find the best spin orbitals using the variational method. That is, we want to 

minimise 

 

(1.30) 

by systematically varying the spin orbitals , subject to the constraint that these spin 

orbitals remain orthonormal, . Doing this formally leads to a set of one-

electron Fock equations  

 
(1.31) 

where the Fock operator  gives the effective one-particle Hamiltonian: 

. 

(1.32) 

The Fock operator is a sum of the core Hamiltonian operator , 

, 

(1.33) 

and the effective one-electron HF potential operator, , 

 

(1.34) 

where  and  are the Coulomb and exchange operators, respectively, defined as  
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(1.35) 

The Coulomb operator  accounts for the Coulombic repulsion between electrons and is 

local in nature in the sense that it gives the averaged potential due to other electrons at a 

point in space and does not depend on other points in space. The exchange operator  

is, on the other hand, non-local since there does not exist a simple potential that uniquely 

define the exchange at a local point in space. The exchange energy accounts for the effects 

of electron exchange interactions due to the indistinguishability of identical particles and 

results from the antisymmetry of the Slater determinantal wavefunction. 

The HF equations are a set of non-linear coupled differential equations in that the Fock 

operator  for one electron depends on the spin orbitals of all other electrons and that 

each spin orbitals  is obtained as a solution of the Fock equation. As a result, an iterative 

approach is needed to solve the HF equations. This is done by first proposing a set of 

guess orbitals, from which the average HF potential operator  is constructed. The 

Fock equations (Equation (1.31)) can then be solved to obtain a new set of orbitals. This 

procedure is iterated until the difference between the new orbitals and the input orbitals 

falls below a predefined threshold value. As a result, this method is known as the self-

consistent field (SCF) method.  

1.4.2 Restricted close-shell, restricted open-shell and unrestricted HF 

The presence of electron spins gives rise to different energy expressions for the HF 

procedures. In a restricted close-shell HF (RHF), the electron spins are all paired up in 

orbitals. It can be shown the energy expression for the RHF single Slater determinantal 

wavefunction is given by  
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Ĵi

K̂i

f̂i

�i

V̂ HF

i



23 
 
 

 

(1.36) 

where the spin of the system has been taken into account and factored out so that only 

spatial orbitals  are used. In the expression,  

 (1.37) 

is the matrix element of the core Hamiltonian, Equation (1.33), representing the electronic 

energy of an electron in spatial orbital i in the combined electrostatic potential averaged 

over all other electrons; 

 

(1.38) 

is the Coulomb energy between electrons i and j (labels in parenthesis) in orbitals i and j 

(labels in subscripts of the wavefunctions); and that 

 

(1.39) 

is the exchange energy. Note that the direct Coulomb energy results from pairwise 

interactions between all electrons whereas the exchange energy results from the pairwise 

interactions between electrons of parallel spins only. 

For openshell systems, two approaches are generally adopted. Using unrestricted HF 

(UHF), the lowest energy for the single Slater determinantal wavefunction is given by  

 

(1.40) 
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where the α and β orbitals have different spatial parts. The Slater determinant is an eigen-

function of  but not an eigenfunction of . Spin contamination, the artificial mixing 

of electronic states of different spins, can lead to inaccurate energies. Techniques exist, 

however, to eliminate spin contamination.
25–27

 UHF is commonly used to study openshell 

systems due to its simplicity, computational efficiency and ease for post-Hartree Fock 

method implementation. 

Another method for dealing with openshell system is restricted open-shell HF (ROHF). 

In this method, electrons are first paired up in doubly occupied spatial orbitals, leaving 

unpaired electrons in singly occupied orbitals. The energy expression for ROHF is given 

by 

 

(1.41) 

where i, j… denote doubly occupied orbitals and m, n… denote singly occupied α 

orbitals; the last term gives the mixing between doubly and singly occupied orbitals since 

they are chemically distinct. The ROHF picture is chemically accurate in that the 

wavefunction is an eigenfunction of the total spin operator . In other words, the ROHF 

wavefunction does not suffer from spin contamination. However, this method is much 

less frequently used than the UHF method in modern quantum chemistry due to its higher 

difficulty in implementation and higher computational cost. The ROHF method lacks a 

unique effective Fock operator,
28

 such that the resulting orbitals and orbital energies are 
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different depending on the choice of Fock operators, making the physical interpretation 

somewhat difficult. 

1.4.3 Roothaan-Hall equations 

The direct solution of the Fock equations (Equation (1.31)) is non-trivial. In 1951-52, 

Roothaan
29

 and Hall
30

 independently proposed a method of converting the set of integro-

differential equations into a set of algebraic equations by introducing basis functions 

(section 1.3). Taking electron spin out of consideration by adopting the appropriate HF 

method, we consider only the spatial orbitals. A set of of K known basis functions or AOs 

 is commonly employed, so that each MO  can be expressed as a linear 

combination of these AOs, viz.,  

 

(1.42) 

Substituting the above expression into the Fock equations , we have 

 

(1.43) 

which is equivalent to the following matrix equation for the expansion coefficients: 

 (1.44) 

These are the Roothaan-Hall equations. F is the Fock matrix with the matrix element 

; S is the overlap matrix with the  giving the overlap 

between the basis functions; C is the coefficient matrix containing the expansion 

coefficients cμi; ε is a diagonal matrix of orbital energies. All these matrices are K × K in 
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dimension. The integro-differential HF equations, using the Roothaan-Hall formalism, is 

thus converted to standard algebraic matrix equations.  

If the set of basis functions used is complete, then the expansion Equation (1.42) would 

be exact, and we would be able to obtain the lowest possible variational energy, the HF 

limit, within the single Slater determinantal approximation. In practice, however, limited 

by computational resources, a finite set of K basis functions is used. For a system of N 

electrons, using a set of K basis functions gives a total of 2K spin orbitals, consisting of 

N occupied spin orbitals and 2K – N unoccupied, or virtual, orbitals. The single Slater 

determinantal wavefunction formed from the occupied spin orbitals is then the best 

approximation to the ground state of the system. 

1.4.4 Electron correlation 

Because the HF potential uses central field approximation, electron-electron interactions 

are not directly taken into account and are only treated in an averaged manner. As a result, 

there is a finite probability that, within the HF approximation, two electrons will occupy 

the same space, which is unphysical. The deficiency of HF theory is that the motion of 

an electron can be affected by the motion of other electrons and this electron correlation 

is not captured by HF theory. The correlation energy Ecorr is defined as  

 (1.45) 

This correlation due to electron-electron interactions is sometimes called dynamical 

electron correlation as it results from the motion of these electrons. As the HF is single 

Slater determinantal, it also fails to account for non-dynamical correlation, arising from 

different determinants contributing similar weights to a system due to their near or exact 

degeneracy in frontier orbitals.  

Ecorr = Eexact � EHF
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Ecorr is always negative as the HF limit, EHF, is an upper bound to the true ground state 

energy, as dictated by the variational principle. Although this correlation energy is 

normally only 1% of the total energy, its exclusion can lead to major errors in chemistry. 

This is particularly true for cases such as transition metal systems, where the neglect of 

electron correlation can result in huge errors. Therefore, methods accounting for electron 

correlation are required for high accuracy quantum chemistry. 

1.5 Post-Hartree-Fock Methods 

To account for electron correlation, it is essential to go beyond Hartree-Fock. Broadly 

speaking, two classes of methods can be distinguished – the variational and perturbative. 

Variational methods, such as configuration interaction (CI), uses a linear combination of 

discrete solution sets whereas perturbative methods, such as many-body perturbation 

theory (MBPT), separate the problem into an exactly solvable part and a difficult part 

with no general analytic solution as a small perturbation to that solvable part.  

1.5.1 Configuration interaction 

The configuration interaction (CI) wavefunction is constructed from a linear combination 

of Slater determinants called the configuration state functions, that is 

 

(1.46) 

where the Slater determinants are obtained by promoting electrons from the occupied 

orbitals to the virtual orbitals in the reference HF Slater determinant. The number of 

electrons promoted determines the nature of these configuration state functions: 

promotion of one electron generates the singly excited state functions , and two 
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electrons, doubly excited state functions , etc. The CI coefficients are obtained by 

variationally minimising the electronic energy for the ground state: 

 

(1.47) 

For a given basis set, a full CI (FCI) wavefunction can be constructed by considering all 

the configurations that can be generated from the reference Slater determinant and 

including them in the calculation. A full CI calculation is highly computationally 

expensive due to its poor scaling with the number of electrons and basis functions, it is 

thus only achievable for very small systems. For most cases, it is necessarily to truncate 

the CI expansion, Equation (1.46), so that only a subset of the determinants is included. 

In general, since lower-order excitations are more important than higher-order ones, 

hierarchical truncation is used. As an illustration, the CI singles-and-doubles (CISD) 

wavefunction recovers ~94.5% of the correlation energy while CISDT with triples 

recovers ~ 95.9%. This goes up to 99.9% at CISDTQ with quadruple excitations. 

The method above of using a single HF Slater determinant as a reference state function 

is called single-reference CI. In systems where a single determinant is insufficient to 

represent the ground state due to (near-)degeneracy (source of non-dynamical electron 

correlation), a multi-reference CI (MRCI) wavefunction is necessary. A reference space 

consisting of more than one dominant determinant is constructed, from which excitation 

determinants are generated from each of the reference determinants.   

1.5.2 Many-body perturbation theory 

Another systematic approach to recover the electron correlation energy is the many-body 

perturbation theory (MBPT). This perturbative method treats electron correlation as a 

 D

ECI = min
 CI

h CI|Ĥ| CIi
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small perturbation to the ground state wavefunction; this method is not variational but 

size-consistent. The simplest example is the Møller-Plesset (MP) theory
31

 – an example 

of Rayleigh Schrödinger perturbation theory – denoted by MPn where n is the order at 

which the perturbation is truncated. The starting point for the MP theory are the 

eigensolutions of the Fock equations, . Using MBPT, we wish to solve the 

eigenvalue problem for electronic state n: 

 
(1.48) 

Expanding the wavefunction and energy as power series, we have  

 

                    (1.49) 

We choose the reference Hamiltonian to be the sum of the Fock operators, 

 , 

(1.50) 

such that the perturbation is defined as  

 . 

(1.51) 

The zeroth order reference determinant is the HF Slater determinant . 

Equating the different power terms in λ in the series expansion of Equation (1.49), we 

find that the first-order change in the nth
 state wavefunction is given by  

f̂i�i = "i�i
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(1.52) 

and has contributions from each of the eigenstates with m ≠ n. The second order (MP2) 

perturbation energy is given by  

 

(1.53) 

which is proportional to the square of the matrix element of the perturbation that mixes 

the eigenstates m and n (the numerator), and inversely proportional to the energy 

difference between eigenstates m and n, showing that the contribution to the perturbation 

energy is the largest if the other eigenstates are close in energy to the state of interest. 

Although higher order energy corrections can be calculated (MP3, MP4…), they are 

rarely used since the MP theory is non-variational and frequently the inclusion of higher 

orders, at additional computational cost, does not improve the calculated results. 

1.5.3 Coupled-cluster theory 

The coupled-cluster (CC) theory, originally proposed for problems in physics, is one of 

the most accurate methods that treat electron correlation for practical ab initio quantum 

chemistry. It has wide-ranging applications in the study of molecular structures and 

properties, excited states and spectroscopy. The basic equations for CC theory have a 

rather simple appearance. Instead of using a linear expansion of wavefunctions as in CI, 

CC uses an exponential ansatz for the wavefunction, viz., 
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(1.54) 

where  is the reference wavefunction, which is typically a Hartree-Fock determinant, 

but can also be other wavefunction arising from, for example, CI. The cluster operator  

can be written as a sum of operators that, for an N-electron system, generate single ( ), 

double ( ) and triple ( ), …, up to N-tuple excitations ( ),  

 (1.55) 

in the reference wavefunction. The CC energy, which is not variational, is given by 

 
(1.56) 

where   is the similarity-transformed (rotated) Hamiltonian of the system. 

The CC energy is a function of unknown amplitudes which can be obtained by solving 

the amplitude equation 

 
(1.57) 

The cluster operator is usually truncated to give different models. One of the most popular 

ones is the coupled cluster singles-and-doubles (CCSD)
32

 where the cluster operator is 

taken as . This CCSD method has the same number of parameters as CISD 

but has better approximations as it also accounts for higher order terms using the products 

of lower order terms – for example, substituting  in the exponential 

wavefunction ansatz Equation (1.54) gives  and  terms (and others), which 

approximately accounts for quadruple and sextuple (and other) excitations, respectively. 

For coupled cluster singles-doubles-and-triples (CCSDT), we take . 
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As CCSDT is rather expensive, a popular method for improving upon CCSD calculations 

is the CCSD(T) method,
33

 which consists of full CCSD treatment with an estimate of the 

connected triples contribution by a non-iterative calculation of MBPT. This is frequently 

considered the “gold standard” in quantum chemistry. 

1.6 Density Functional Theory  

The ab initio wavefunction-based methods discussed earlier are rather expensive and are 

practical only for systems with a small number of atoms. Density functional theory (DFT) 

aims to provide an alternative framework within which the electronic structure problem 

is tackled. The central idea behind DFT is that it is not necessary to solve the Schrödinger 

equation for the wavefunction of the system (a 4N-variable quantity – 3N spatial and N 

spin coordinates – for an N-electron system) to compute the ground state energy, but 

rather it is sufficient to express the energy (and other properties) as a functional of the 

electron density, which is a 3-dimensional quantity. 

1.6.1 Hohenberg-Kohn theorems 

The foundations of modern DFT are grounded in two theorems developed by Hohenberg 

and Kohn (HK) in 1964.
34

 The first theorem (HK1) states that the ground state electron 

density uniquely determines the external potential, thus the total energy, of a system. This 

means that the total energy is a unique functional of the ground state electron density. We 

know that the Hamiltonian of a system depends on the nuclear positions {RA} and atomic 

numbers {ZA} of the atoms and the total number of electrons, N (Equation (1.3)). It is 

quite easy to see that knowing the ground state electron density immediately gives us 

these three quantities since, 1) the integral of the density over all space gives the number 

of electrons N, viz., 
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(1.58) 

2) the electron density maxima give the positions of the nuclei {RA}; and 3) for any 

nucleus A at density maximum, the atomic number ZA is given by  

 

(1.59) 

where r is the radial distance from nucleus A,  is the spherically averaged density. In 

words, this means that the radial derivative of the spherically averaged electron density, 

at the nuclear position, gives twice the density at the nucleus, , multiplied by the 

negative of the atomic number. At this stage, we see that given a known electron density, 

one can form the Hamiltonian for the system, solve the Schrödinger equation and thus 

determine the wavefunctions and energies of the system: 

 (1.60) 

The second theorem (HK2) guarantees that the ground state energy can be variationally 

found, provided that we can find an exact energy functional of the electron density ; 

it states that any trial density satisfying the boundary conditions delivers an energy that 

is an upper bound to the true ground state energy and that the energy is exactly the same 

as the true ground state energy only if the trial density is exactly the true density, that is, 

 (1.61) 

These theorems prove the existence of the functional for finding the energies but they do 

not prescribe how one can find the functional!  
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1.6.2 The energy functional 

The electronic Hamiltonian Equation (1.6) contains three terms: the kinetic energy of the 

electrons, the electron-electron interactions and electron-nucleus interactions and can be 

written as 

 (1.62) 

and that the energy functional is given by 

 

(1.63) 

where  

 

(1.64) 

is the external potential that depends on the system. This term can be trivially evaluated 

once the system is specified, that is, once the potential v(r) is known; 

 (1.65) 

is the internal energy functional or the Hohenberg-Kohn functional that is independent of 

the external potential v(r) and is thus universal for all systems (depends only on the total 

density). The electron-electron interaction energy functional Vee[ρ] can be further 

separated into the functional due to classical Coulomb interaction, J[ρ], and non-classical 

contributions, Enc[ρ]. If this functional F[ρ] were known, we would have solved the SE 

for all systems. However, the explicit form of this functional is unknown and this is a 

major challenge for DFT development. 

Ĥ = T̂ + V̂ee + V̂Ne

E[⇢] = T [⇢] + Vee[⇢] + VNe[⇢] = F [⇢] +

Z
⇢(r)v(r)dr

v(r) = �
MX

A=1

ZA

rA

F [⇢] = T [⇢] + Vee[⇢] = T [⇢] + (J [⇢] + Enc[⇢])
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1.6.3 The Kohn-Sham approach 

The quest for the universal functional F[ρ] is not directly in sight. The method of Kohn 

and Sham
35

 gives us one way to proceed with practical DFT. The essential idea behind 

the KS approach is the introduction of a fictitious system of non-interacting particles that 

generate the same density as the true system of interacting particles. In doing so, a special 

type of one-particle orbitals  is reintroduced. The internal energy functional F[ρ] can 

then be written as   

 (1.66) 

where the exchange-correlation functional Exc[ρ], given by 

, (1.67) 

is a collection of all portions of the total energy that are not exactly known.  

In this approach, the bulk of the kinetic energy of the true system can be recovered using 

the kinetic energy of the fictitious non-interacting systems, Ts[ρ], given by 

 

(1.68) 

The electron density of the system is also exactly known in term of these orbitals, 

 

(1.69) 

where fi is the occupation number of ith
 orbital. 
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To find the set of orbitals  that minimises the energy functional, we apply the 

variational principle and take the functional derivative of the energy functional to arrive 

at the Kohn-Sham equations: 

. 

(1.70) 

The external potential due to the electron-nucleus interactions is given by  in 

Equation (1.64); the Coulomb potential  is given by  

 

(1.71) 

and the exchange-correlation potential  is given by the functional derivative of the 

exchange-correlation functional , viz.,  

 

(1.72) 

The KS equations (1.70) is a set of coupled one-particle Schrödinger equations that can 

only be solved self-consistently, as the sum of the potential terms depends on the density, 

and thus the orbitals, of the system that we are trying to solve for. 

1.6.4 Hartree-Fock vs DFT 

The HF method is a single Slater-determinantal approximation to the true ground state 

wavefunction and that the HF equations are obtained by optimising the MOs of the trial 

wavefunction to get the best energy. DFT is formally exact. The KS formalism is one 

approach to DFT that tries to optimise the particle density that maps a non-interacting 

system to a physical, interacting system to get the best energy. Thus, to get a property 

from wavefunction-based methods, one needs to know the correct quantum operator 
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corresponding to that property, but to get the property from DFT, one only needs to know 

how that property depends on the density of the system.  

The KS orbitals are introduced to reproduce the particle density of the true interacting 

systems and have no strict physical meanings, except for the HOMO, whose energy gives 

the negative of the ionisation energy.
36–39

 In practice, however, these KS orbitals have 

similar shapes to the HF orbitals, allowing for qualitative analysis. 

1.6.5 The exchange-correlation energy 

The exchange-correlation energy is commonly separated into the exchange energy and 

the correlation energy. The exchange energy results from Pauli Exclusion principle and 

arises due to the antisymmetry requirement of the total electronic wavefunction of the 

system. It describes the non-classical effect (interactions not due to the electronic charges 

but electronic spins) that electrons of parallel spins avoid each other in space. This energy 

gives the lowering of total energy due to the presence of this “exchange hole”. 

The correlation energy is what remains of the true total energy after taking away the 

kinetic and exchange energies. Unlike the exchange energy, correlation energy is more 

pronounced for electrons with anti-parallel spins, as these have higher likelihood of 

occupying the same region in space. This energy lowering can be understood as the effect 

arising from quantum fluctuations of electrons of anti-parallel spins as they coordinate 

their movements to minimise their Coulomb energy. The energy difference between the 

true kinetic energy and the non-interacting kinetic energy is also a major contribution to 

the exchange energy in KS-DFT. 
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1.6.6 Density functional approximations  

The exchange-correlation functional can be approximated to varying degrees of accuracy, 

generally at increasing computational cost. These density functional approximations 

(DFAs) can be described as rungs of the Jacob’s ladder (Scheme 1.1).  

 

Scheme 1.1. Jacob’s ladder of Density Functional Approximations (DFAs). 

The crudest form of approximations is the local density approximation (LDA) which 

assumes that the electron density is the same at every position in space (the uniform 

electron gas (UEG)). The exchange energy (of the UEG) can be obtained exactly and is 

given by  

. 
(1.73) 

The correlation energy from the LDA is generally obtained by fitting to the results of 

accurate numerical quantum Monte Carlo simulations of the UEG (e.g. the correlation 
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functional  due to Vosko, Wilk and Nusair
40

). LDA functionals are widely used 

in the study of solid-state systems but are considered inadequate for the study of 

molecular systems. 

To account for the rapidly varying electron densities in molecules, generalised gradient 

approximation (GGA) functionals are developed. These functionals take into account the 

gradients of the density (thus “semi-local”) and have the general form of 

. 
(1.74) 

Most GGA functionals are constructed as correction terms that are added to the LDA 

functionals. These GGA functionals reproduce the LDA functionals in the limit of zero 

density gradient. GGAs can give better results than LDAs in predicting geometries and 

ground state energies of molecules and solids and in the description of covalent bonds 

and systems with weak bonding. However, they are not necessarily accurate due to, for 

example in B88 exchange functional, incorrect asymptotic behaviour. 

In meta-GGA functionals, the Laplacian/second derivative of the density  is 

included to improve accuracy. Additionally, the kinetic energy density τ is also included 

as it is numerically more stable and helps to reduce self-interaction error (SIE; vide infra) 

present in DFAs. Examples of meta-GGAs include TPSS
41

 functional. These functionals 

have been shown in various cases to perform better than LDAs and GGAs in the study of 

molecular properties,
42–45

 although hybrid GGAs (vide infra) can perform better than pure 

meta-GGAs for many applications. 

Since LDA and GGA functionals overbind, whereas HF underbinds, another strategy is 

to mix in a portion of exact HF exchange to form the so-called hybrid GGA functionals. 

EVWN
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When the same amount of HF is added for all molecular ranges, these are called global 

hybrid functionals. The most popular one is B3LYP.
40,46–48

 This functional has 3 

parameters (fitted to empirical data) that control the amount of HF exchange added. The 

exchange-correlation has the general form 

. (1.75) 

These hybrid functionals have been shown to be further improvements for molecular and 

solid-state properties over LDAs and GGAs.
44,45,49–51

 

Range-separated functionals are a subclass of hybrid functionals. In these functionals, 

the inter-electron interaction is divided into a short-range (SR) and a long-range (LR) 

part: 

 

(1.76) 

where the first term is the SR part described by exchange from (semi-)local functionals 

such as PBE and the second term is the LR part described by exchange from HF; α and β 

are the mixing parameters and ω is the range parameter that depend on the functional. 

The general form of the exchange-correlation is given by 

 (1.77) 

Range-separated functionals include CAM-B3LYP and ωB97X-D and are popular for 

the study of excited states and other time-dependent phenomena. 
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In the next rung of the Jacob’s ladder is the double hybrid GGAs which include the 

exchange energy from MP2 to improve the dispersion and exact exchange. Virtual 

orbitals are used. The exchange-correlation has the form 

. (1.78) 

This class of functionals include B2PLYP and ωB97X-2. These functionals have much 

higher formal computational scaling than HF. 

1.6.7 Dispersion 

The failure to capture London dispersion interaction is a major inadequacy in accurately 

accounting for thermochemistry, kinetics and non-covalent interactions.
52–54

 Most DFT 

functionals cannot reproduce the long-range London dispersion of the form , but 

instead fall off exponentially. Empirical dispersion correction of the form 

 

(1.79) 

which is in fact Grimme’s D2 dispersion correction
55

 used in functionals such as ωB97X-

D
56

, has been widely added to DFT functionals to improve calculations, especially in the 

study of systems with weak bonding. The interatomic coefficients C6ij are obtained by 

fitting to accurate data and the damping function fdamp is required to ensure R–6 

convergence at small internuclear separation. More recent developments in the dispersion 

correction include the so-called Grimme’s D3 dispersion correction,
57

 where in addition 

to the (unscaled) C6 terms, additional C8 terms are included. 
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1.6.8 Self-interaction error 

The self-interaction is a spurious interaction arising from the approximate nature of 

DFAs.
58

 In HF theory, the exchange energy is computed exactly, the correlation energy 

is absent and the self-interaction is exactly cancelled out. The Coulomb interaction results 

from the interaction of two different electrons and this is accurately captured by 

wavefunction theory. In KS-DFT, the energy is a functional of single-particle electron 

density; the two-electron Coulomb interaction cannot be distinguished from the self-

interaction. The Coulomb energy in DFT results from the interactions of each electron 

with the entire electron density, including its own density, thus giving rise to SIEs. SIEs 

have been shown to cause inaccuracy in the study of numerous phenomena including 

orbital localisation,
58–61

 ionisation,
62–65

 charge transfer
66–68

 and photoemission
36,69–71

 

processes. In DFT development, one generally includes the self-interaction and then tries 

to remove it from the Coulomb energy in the exchange-correlation functional.
58

 

1.6.9 Density functionals used in this thesis 

M06-2X.72
 M06-2X is a global hybrid meta-GGA exchange-correlation functional. It is 

a functional parametrised for non-metals only and has twice the amount of nonlocal 

exchange (2X) as compared to similar functional M06 (vide infra) which is parametrised 

for transition metal and non-metals. The parametrisation of M06-2X uses 314 data points, 

out of a total of 496 data points from bond lengths, vibrational frequencies, vibrational 

zero-point energies (ZPEs) and so on. This functional is recommended for applications 

involving main-group thermochemistry, kinetics and non-covalent interactions (NCIs). 

This is the DFT functional we used for the study of radical cationic system in Chapter 2 

of this thesis. M06-2X includes 54% of exact Hartree-Fock exchange (HFX), which was 

shown to be in the optimal range of 50%-60% HFX in successful spin density localisation 
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of a single hole in a cluster of 64 water molecules.
73

 It has been shown to perform very 

well for describing neutral and anionic model system having dispersion and hydrogen-

bonding interactions
74,75

 and for ionisation energies and aqueous redox potentials of 

organic molecules.
76

 (see subsection 2.3.1 for a detailed discussion on the choice of DFT 

functional). 

"B97X-D.56
 "B97X-D is a range-separated hybrid functional where the inter-electronic 

interactions are separated to short-range and long-range interactions controlled by a 

separation parameter ω. This functional, with the inclusion of Grimme’s D2 dispersion 

correction, captures weak NCIs, such as the attractive London dispersion component of 

van der Waals interactions, which can influence the  structures and energetics.
54

 We 

applied this functional to study the phosphorus-containing system in Chapter 3, as this 

functional has been successfully employed in the study of similar phosphorus-containing 

catalytic reaction mechanisms.
77

 

MN15.78
 MN15 is a recently developed global hybrid meta-NGA (non-separable gradient 

approximation; so called since the approximations to the exchange and the correlation of 

the energy functional are not separated) functional from Truhlar and co-workers. 

According to the developers of this functional, it has greater accuracy than any previously 

available ones for a broad range of applications. This functional uses a wide range of 

physical and chemical properties, including energies, thermochemistry, reaction barrier 

heights, NCIs, excited state energies, and molecular structures, for parametrisation. It has 

overall the best performance for both single-reference and multi-reference chemical 

systems amongst 83 functionals tested. This is the functional we used for the study of TM 

catalysis in this thesis. MN15 was used as it performs better than many others in 

predicting TM dimer bond lengths and bond energies (TMBE33 dataset
79–83

) and barrier 
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heights (TMBH21 dataset
84–86

) for reactions involving TMs.
78,87,88

 Its accuracy for barrier 

heights are comparable to the popular M06 functional
72

 employed for the study of TM 

catalysis.
89–96

 MN15 also performs the best for TM coordination database (WCCR10
97

). 

In a recent study of tri-copper complex catalysed methane-to-methanol conversion,
98

 

MN15 came out the best amongst 31 functionals tested, including TPSS, M06, B2PLYP, 

ωB97X and ωB97X-D3. It has been employed in a number of theoretical study of TM 

catalysis
98–103

 and spectroscopy
104

, giving good quantitative experimental agreements. 

The combination of MN15 with ECP basis sets has been shown to perform well for bond 

lengths and dissociation energies for bimetallic diatomic molecules.
105

 

1.7 Solvation Models 

Two classes of solvation can be distinguished: the explicit solvation model includes the 

individual solvent molecules and considers their molecular detail together with the solute 

molecules; the implicit solvation model treats the solvent as a continuous medium within 

which the solute molecules are dissolved. Due to the large number of solvent molecules 

in a chemical reaction, in quantum chemical calculations, implicit solvation is almost 

always the choice of solvation model used.  

In the implicit model, the free energy of solvation is given by 

 (1.80) 

where  is the free energy required to create the solute cavity;  is the van 

der Waals interaction between the solute and solvent;  is the electrostatic 

component due to the charge redistribution and reorientation induced by the polarisation 

between solute and solvent;  accounts for hydrogen bonding interactions. The 

�Gsolv = �Gcav +�Gdisp +�Gelec (+�Ghb)

�Gcav �Gdisp

�Gelec
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implicit solvation models can differ in the descriptions of the cavity and the dielectric 

media and the cavity calculation methods.  

Two major classes of implicit models can be distinguished: the conductor-like screening 

models and the continuum models. In the conductor-like screening models, the solvent is 

treated as a conductor of infinite permittivity.
106

 Examples of this class include 

COSMO
107

 and COSMO-RS
108,109

. In COSMO, the cavity is based on the solvent 

accessible surface and the electrostatic interactions are treated approximately. This model 

can be a good approximation for very polar solvents. In COSMO-RS, the “conductor-like 

screening model for real solvents”, the COSMO results are additionally augmented with 

statistical thermodynamic treatment of the screening charge density on the surface of the 

solute. 

In the continuum models, a parametrised dielectric medium is used to surround the solute 

cavity and represent the solvent polarisation caused by the solute.
106

 Due to the mutual 

polarisation between solute molecules and the solvent medium, the screening of the 

solute’s electrostatic field by the continuum is calculated iteratively. Examples of such 

models include polarizable continuum models (PCMs) such as IEF-PCM
110–112

 and C-

PCM
107,113,114

 and the SMx115,116
 and SMD

117
 models. In PCMs, the cavity is formed from 

the overlapping van der Waals spheres and the electrostatic interactions between the 

solute and the polarisation of solvent is obtained by solving the Poisson equation. 

1.7.1 Solvation model used in this thesis 

For this thesis, we have generally used the SMD model, from Truhlar and co-workers, to 

account for implicit solvation effect of the reaction solvents. This model is parametrised 

using a training set of 2821 solvation data including 2346 solvation free energies for 318 



46 
 
 

neutral solutes in 91 solvents and 143 transfer free energies for 93 neutral solutes between 

water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, 

P, S, Cl, and Br. The SMD model employs a single set of optimised parameters (intrinsic 

atomic Coulomb radii and atomic surface tension coefficients). This model was found to 

be the most accurate in computational redox potential studies
118

 and was thus used in 

Chapter 2. For other systems, this solvation model is favoured, especially when used in 

combination with DFT functionals from the Truhlar group (e.g., M06-2X and MN15), 

since the parametrisation of the SMD parameters are optimised using the functionals 

(M05-2X) from the same research group.
117

 

1.8 Chemical Reactivity and Selectivity 

1.8.1 Transition state theory 

In chemical systems, the interesting transitions from the reactants to the products occur 

in a very small timescale. These transitions through the transition states (TSs), which are 

first-order saddle points on the PES, are rare events. We want to study the rates of reaction 

using results from, for example, conventional DFT calculations. Transition state theory 

(TST), also known as activated complex theory (ACT), is a method for calculating the 

thermal rates of change in such chemical reactions.
119–121

 This theory assumes that there 

is a quasi-equilibrium between the reactant molecule and the activated complex at the 

transition state in that the redistribution of internal vibrational energies of the reacting 

solute and solvent species is much faster than the timescale for bond breaking/formation. 

As a result, kinetic theory using Maxwell-Boltzmann statistics can be applied at the 

activated complex to study the rates of the conversion of the activated complex to the 

products, without re-crossing. TST further assumes that the PES is adiabatic, that is Born-

Oppenheimer separation of the electronic and nuclear motions applies. Within this 
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framework, the macroscopic rate constant for the formation of the product is given by the 

Eyring equation: 

 

(1.81) 

where  is the activation free energy for the formation of the activated complex. 

It is helpful to mention Hammond’s postulate which states that the TS of a reaction 

resembles either one of the reactants or the products that is closer to it in energy. Thus, 

in an exergonic reaction, the TS is closer to the reactants in energy and thus resembles 

the reactants in structure, as usually the case in early-TS formation. Conversely, in an 

endergonic reaction, the TS is closer to the products in energy, and resembles the 

products, as in late-TS formation. 

It is necessary to bear in mind that despite the successes of simple TST to account for the 

rates and selectivities of many thermal reactions, TST is only valid under the assumptions 

outlined before, and recently there have been studies showing examples where TST is 

insufficient to describe the chemical reactions due to the breakdown of the underlying 

assumptions.
122,123

 

1.8.2 Kinetic vs thermodynamic control of reactions 

In a chemical reaction where two products are possible from the same reactants, different 

sets of products can be formed under different reaction conditions, as first observed in 

the formation of both endo- and exo-diastereoisomers in the Diels-Alder reaction between 

6,6-pentamethylenefulvene and maleic anhydride, first described by Woodward and Baer 

in 1944.
124

 The exact outcomes for such reactions are determined by a balance between 

kinetic and thermodynamic influences.  

k =
kBT

h
e��G‡/RT

�G‡
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A possible simplified PES for such a reaction is shown in Scheme 1.2. Under kinetic 

control, typically at low temperature, the reaction proceeds irreversibly such that the ratio 

between the two products, A and B, is solely determined by the difference in the 

activation barriers, , for the rate-determining steps and is quantitatively given, 

using simple TST, as the ratio of the relative rates of formation, viz., 

. 

(1.82) 

 

Scheme 1.2. Schematic potential free energy surface. 

We here assume that the Curtin-Hammett principle applies: the reaction complexes in 

the reactant pool equilibrate amongst themselves very rapidly, at rates that are much faster 

than product formation, such that the lowest energy reaction complex (RC) is taken as 

the reference energy zero. In this framework, the activation barrier for the formation of 

product A is given by , taken from the lowest energy RC (RCB here) to the activated 

complex, in accordance with the energetic span model.
125
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Under thermodynamic control, typically at high reaction temperature and prolonged 

reaction time, the reaction becomes reversible and is under thermodynamic control. That 

is, both activation barriers for the product formations become thermally accessible, so 

that the product ratio is dictated by the difference in their thermodynamic stabilities, 

measured by their difference in the Gibbs energies of reaction, , and is given 

quantitatively by 

. 

(1.83) 

1.8.3 Conformational sampling and Boltzmann weighting 

In many cases, different conformations of the TSs exist that lead to the same product at 

the given reaction temperature. In those cases, the ratio of product selectivity is dictated 

by all the thermally accessible TSs for the competing product formations. All the rate-

limiting TS conformers are then used for Boltzmann weighting to give the selectivity 

ratio. Standard procedures for Boltzmann weighting can be found in, for example, 

Equation (2) of reference
126

 and the SI of reference
127

. Specifically, the selectivity 

between two products A and B is calculated via 

 

(1.84) 

where   is the energy difference between the ith
 conformer of 

product X (X = A, B) and the lowest energy conformer of all products, state 0, having the 

lowest activation barrier of . 
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