

Journal Club

Constructing and explaining machine learning models for chemistry: example of the exploration and design of boron-based Lewis acids

Zihan Li

25th Jul 2025

Content

- 1. Background for Research
- 2. Results and Discussion

3. Conclusion

1. Background for Research

Machine Learning

drug discovery, molecular simulations, chemical reaction prediction, synthesis planning, etc.

Black box model

Eg. deep neural networks

highly accurate V

limits the ability to extract scientific knowledge

Solution

explainable artificial intelligence (XAI)

- elucidating what ML algorithms have learned
- fostering scientific knowledge

inspiring new concepts and ideas

Applied on QSAR

Quantitative Structure—Activity Relationship

Predict Lewis acidity

current job: Greb group's GNN model Angew Chem Int Ed 2024, e202401084.

This Work

2. Results and Discussion

Lewis acidity scale

relevant, consistent and accessible quantity

use DFT at the M062X/6-31G(d) level of theory in isodesmic calculations as a compromise between efficiency and precision to provide reliable FIA data.

SMILES	δ(³¹P) (solvent)	Δδ(³¹ P)	averag e Δδ(³¹ P)	FIA (kJ.mol- 1)	HIA (kJ.mol- 1)	Reorganization energy (kJ.mol-1)	GEI (eV)
CCOB(OCC)OCC	48.7 (neat) ⁶	7.7 ⁶	7.7	248.69	371.27	208.95	0.69
COB(OC)OC	48.1 (C6D6) ¹⁰	1.310	1.3	234.63	359.50	188.53	0.73
CICCOB(OCCCI)OCCCI	55.1 (neat) ¹¹	14.111	14.1	318.12	409.35	214.23	1.15
CICCCOB(OCCCCI)OCCCCI	56.3 (neat) ¹¹	15.3 ¹¹	15.3	312.98	431.19	221.68	1.39

Chemical space

Boron Lewis acids chemical space

Use k-means + Morgan fingerprint to enhance diversity and chemical space

Get more samples

Section 2. Results and Discussion

Constructing models for ONO

RDKit + F-statistic
Hammett-extended

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Interpretability

Insights in the Lewis acidity

Principal Component Analysis (PCA) reduces high-dimensional correlated data into a few uncorrelated components, capturing the main variance for easier visualization and analysis.

Interpretability

ONO Molecular design

3. Conclusion

Conclusion

The authors combined RDKit descriptors with Hammett-extended descriptors and built a high-performance predictive model, oracle, using linear regression. FIA was used as the index to predict the Lewis acidity of boron compounds, achieving a mean absolute error (MAE) of less than 6 kJ·mol⁻¹.

- Clear Process
- Interpretability (PCA)

Thank You