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Introduction

« Conformer generation with Diffusion model
« Less computationally expensive than DFT
« A small model in general (<100M parameters)
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Results

Benchmark of this model against existing models

Precision

Recall

MAE of ensemble properties

Out-of-distribution generalization

SOTA

The least amount of incorrect
samples generated.
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On par SOTA

The most amount of samples withinEnergy, dipole moment, HOMO-

the training set generated.

LUMO gap, minimum energy

SOTA

Testing with larger molecules (>100
atoms) with models trained on
molecules with ~44 atoms on
average



Technical detalls

« Generative models
 Diffusion Transformers
*  Flow matching

- Equivariance

«  Conditioning

* Positional Embedding
«  Self-attention
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Generative models

A generative model is a joint probability distribution p(x), for x € X. In some cases, the model
may be conditioned on inputs or covariates ¢ € C, which gives rise to a conditional generative
model of the form p(x|C).

- Probabilistic Machine Learning: Advanced Topics
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Equivariance

That the output of a function is
identical for different inputs that
can be transformed into each
other via certain permitted
operations.

Slides from
https://geometricdeeplearning.com/slides/Cambridge
_1 Introduction_to Groups_and_Representations.pdf
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I Group mvariance I

We can now formally describe how to exploit the symmetries in ®!

A function f : X(Q) — Y is ®-invariant if f (py(g)x) = f(x) for all
g € ©, i.e., its output is unaffected by the group action on the input.

e.g. image classification: output class won’t depend on image shifts
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Orbits and equivalence relations

®-equivalence

X~gy<=3dge®:gx =y

Satisfies the axioms of an equivalence relation:
1. Reflexivity: X ~@ X
(Because ® contains the identity)

2. Transitivity:
X~ YNY ~6 Z=X~Z

* (Because ® is closed under composition)
3. Symmetry: X ~g Y <Y ~¢ X

* (Because G is closed under inverses)

0, ={gx|x € X, g€ b}




I Group equivariance

We proceed to define a more fine-grained notion of regularity:

A function f : X (Q) = Z(Q) is ®-equivariant if, for all g € 6,

f(px(g)x) = pz(g)f(x), i.e., applying a group action on the input
affects the output in the same way.

e.g. image segmentation: segmentation mask must follow any
shifts in the input

~=lH

Note that invariance is a special case of equivariance (for which p5?)




Architecture (model)
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Flow matching
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We describe this transformation in terms of a stochastic interpolant x, [26, 49, 50]. A noisy sample at time ¢ € [0, 1] is
defined as

x,=(1—t)- xog+t-x1+0-€ (1)
where € € RV*3 is drawn from the standard normal distribution A/(0, I) and scaled by a constant o € R>(. We
remark that ¢ represents progress along this interpolation path, not physical time. Notably, stochastic interpolants enable
transformations between arbitrary distributions and allow us to assess the performance of the generative process under
varying prior distributions gg. This contrasts with, e.g., score based diffusion methods [24, 51], which typically assume
an isotropic Gaussian prior.

The stochastic interpolant induces a deterministic trajectory of densities p;(x), governed by an ODE known as the
probability flow:

dx = us(x) dt. 2)
If the vector field u; () was tractable to sample, the weights of a neural network (NN) v?(x, t) : [0, 1] x R¢ s R¢
could be optimized directly by minimizing

Lew(0) = Evnae(0,1)0mpe(a) ||10(@) = 07 (@,)] | 3

The learned vector field v could then be used to generate new samples from the target distribution by starting from
Ty ~ qo and integrating the probability flow ODE (Eq. 2), for example, using a numerical scheme such as Euler’s
method, i.e., ;4 s = x; + v (x4, t) At for time step At.

However, for arbitrary distributions g and q;, the objective in Eq. 3/is computationally intractable [52]. Instead, we
consider the expectation over interpolated point pairs from the two distributions. defines a conditional probability

distribution py(x|zo, 1) = N (z|(1 —t) - o +t - x1,0?), with conditional vector field u,(x|xo, 1) = T1 — o [27].

The ability to directly sample from the conditional probability via Eq. 1/ allows formulating the conditional flow
matching (CFM) objective

2
ui(x|To, 1) —'ve(a:,t)H . 4

Lcrm (0) = ]EtNU(O,l),EONQO,mthh y@~pi(x|To,21)
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Conditioning
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4.1 Conditioning

Each DiT block receives conditioning signals that encode information about the time step ¢, as well as atom- and pair-
wise information derived from a molecular graph G = (V, £). Pair-wise information is used during the self-attention
update (see Eq. 5 and Sec. 4.3), whereas atom-wise information and the time conditioning signal are injected via
adaptive layer norms (see Eq. 6).

Time conditioning The current time ¢ of the latent state x; is encoded via a two-layer MLP as
c' = MLP(t). (7)

Atom-wise conditioning Atom-wise conditioning tokens are obtained from a GNN inspired by the processor module
of the MeshGraphNet (MGN) framework [54]

ng == GNNnode (V, g) 3 (8)
where cig denotes the final node representation for atom . See Appendix for details on the GNN.

Pair-wise conditioning In addition to node representations, the GNN also produces edge-level representations, which
can be used to define pair-wise conditioning tokens:

. GNNegee (V,E) V(i,7) €E
- . g = dg ! !
bond-pair: c {Eg V(i) € €.

ij
These tokens only capture interactions between bonded atoms, i.e., when (i, j) € £. Conditioning tokens for non-
bonded pairs are set to a learnable vector &. Since self-attention operates on all atom pairs (i, 5), even if they are not
connected by a chemical bond, we also define an alternative pair-wise conditioning method inspired by the Graphormer
architecture [55]

®

all-pair: ¢, = MLP (s(3, ), (10)

where s(%, j) denotes the graph geodesic (i.e., the shortest path between atoms ¢ and j via edges in G). This formulation
allows conditioning on all atom pairs, even if they are not directly connected. In the following, we refer to these two
variants as bond-pair (Eq. 9) and all-pair (Eq. 10) conditioning, respectively (see Sec. 5 for empirical comparisons
between both methods).



Positional Embedding
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4.2 Positional Embeddings (PE)

We inject information about the current atomic positions R = {7,...7x|7; € R3} of the latent state x; via
positional embeddings (PEs). To that end, we assume the positions to have zero center of mass (see section A.1). As
mentioned in Sec. 3.1} conformer identity is determined only by the relative positions of atoms (i.e., it is invariant
under rigid translations and rotations), but ensuring that these symmetries are preserved within the network often incurs
computational overhead.

Therefore, we examine a representative range of PEs that vary in the number of Euclidean symmetries they respect by
construction, which affects how the latent representations transform under translations and rotations. This includes
absolute and relative PEs, motivated by a similar distinction made in other application domains [56, 57]. Inspired by

recent advances in geometric deep learning [58-60], we also propose a PE strategy, obeying all Euclidean symmetries.

Our aim is to find an acceptable tradeoff between model accuracy, efficiency and scalability, by scanning the design
space of PE strategies.

Absolute Positional Embeddings (aPE) Following Refs. [31, 37] they are calculated as
pi™® = MLP(7) (11)

where 7; € R3 is the Cartesian position of the i-th atom. This kind of PE is neither rotationally nor translationally
invariant, and serves as a baseline without any symmetry constraints.

Relative Positional Embedding (rPE) We use displacements vectors 7;; = ; — 7°; to build pairwise relative PEs as
Py = MLP(;) . (12)

This formulation ensures translational invariance but not rotational invariance.

Euclidean Positional Embedding (PE(3)) Adapting ideas from equivariant message passing neural networks like
PaiNN [61] or NequlP [62], we construct SO(3)-equivariant pairwise PEs as a concatenation of L + 1 components

L
P = @‘Pe(rij) O Y(fi5), (13)
£=0

where ¢, : R — R*# is a radial filter function, # = #/r, and Y, € R(*+1)X1 are spherical harmonics of degree
¢£=0...L. The element-wise multiplication ‘©®’ between radial filters and spherical harmonics is understood to be

“broadcasting” along axes with size 1, such that (¢, @Y ;) € R(2¢+1)*H and (after concatenation) pff ®) ¢ REAL*xH

Under rotation of the input positions, these PEs transform equivariantly (see Appendix B.2.2). Moreover, because
displacement vectors are used as inputs, the embeddings are also invariant to translations. As a result, they respect the
full set of Euclidean symmetries relevant to molecular geometry.

9 &
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Self-attention
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4.3 Self-Attention Operation

For ease of notation, we only describe self-attention with a single head, but employ multi-head attention [29] with 7peaqs
heads in our experiments. All self-attention blocks rely on query, key and value vectors, which are obtained from the
input tokens % = {hy,...,hy | h; € RF} as

q=W,h, k=W;h, v=W,h, (14)

where W, W, , W, € R *H are trainable weight matrices and h is either identical to h or combines it with a PE
(see below). We define a slightly modified similarity kernel

sim(q, k, u) = exp (L\/ﬁ@u)), (15)

where u € R¥ is used to inject additional information, e.g., conditioning signals and/or positional embeddings, and ‘®’
denotes element-wise multiplication. Depending on the subset of Euclidean symmetries we aim to incorporate, we
adopt slightly different formulations of the self-attention mechanism, as detailed below.
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Standard Self-Attention For absolute and relative PEs, we slightly modify standard self-attention to allow injecting
pair-wise information into the values in addition to using our modified similarity kernel:

N .
Zj:l sim(q;, kj, wij) - (v; © usj)

ATT(H); =
) E;V=1 sim(q;, kj, uwi;)

(16)

Queries, keys, and values are obtained with Eq. 14 from different (position-encoded) tokens h; depending on the chosen
PEs; further, the injected pair-wise information u,; differs:

>

a7

1
h; for relative PEs, +pt  for relative PEs.

{hi + p?E  for absolute PEs, {c-g- for absolute PEs,
i = and Uij; =

Here cf; € R are pair-wise graph conditioning tokens (see Eqs. ]and 10) and p*E € R and pF € R are the
absolute and relative PEs described above (see Egs.11]and|12). o

SO(3)-Equivariant Self-Attention To preserve all Euclidean symmetries throughout the network, every token must
transform equivariantly. One way to achieve this is by separating out the rotational degrees of freedom, encoding
them with irreducible representations of the rotation group SO(3). This introduces a “degree-axis” of size (L + 1)?,
which encodes angular components of increasing order. The maximum degree L is chosen to ensure high fidelity at a
reasonable computational cost. For example, setting L = 1 restricts the representation to scalars and vectors, as used in
models like PaiNN [61] or TorchMDNet [34]. An SO(3)-equivariant formulation of self-attention is then given as

N . .
Zj:l Slm(qi’ kj7 uij) ’ (uij ® 'Uj)
N .
Zj:l sim(q;, kj, wij;)
where equivariant queries, keys and values can be calculated similarly to Eq. 14|and ‘®’ denotes a Clebsch-Gordan
(CG) tensor product contraction [60]. The dot-product in the similarity measure is taken along both feature and degree

axes, such that the overall update preserves equivariance (see Appendix for details). Tokens and scaling vectors are
calculated as

ATTsop)(H)i = , (18)

Ei = h;, Uij = ¢(rij) © cigj ) U;j = sz(3) oc (19)

17 ?
where ¢(r;;) € READ**H s g radial filter, and the element-wise products with the pair-wise conditioning tokens
cigj € R H are broadcast along the degree axis. Importantly, the 2¢ + 1 subcomponents of the radial filter for degree /

are obtained by repeating per-degree filter functions ¢,(r;;) € R**# along the degree axis to preserve equivariance
(see also Eq. 13).
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