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• DFT’s computational expense limits its usage – 𝑂 𝑛!

• Machine Learning Interatomic Potentials (MLIPs) have the potential to accurately approximate DFT while 

being dramatically faster – 𝑂 𝑛

• Current MLIPs are mostly trained on smaller problem-specific datasets – limited by computational cost (unlike 

language and vision models - generalised across diverse data distributions and tasks)

• This paper: 

• A family of Universal Models for Atoms (UMA) – a single generalised model 

• Training datasets: 500 million atomic systems, 30 billion atoms

• Covering materials, catalysis, molecules, molecular crystals and Metal Organic Frameworks (MOFs)

• Empirical scaling laws relating compute, data and model size

• Mixture of Linear Experts (MoLE) architecture to improve compute efficiency

Background
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Summary of UMA models: 

• Small (S): suitable for computationally intensive applications

• Medium (M): most general-purpose model, more accurate than UMA-S

• Large (L): highly accurate, helps understand scaling behaviour

Method – UMA Models
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• 500 million atomic structures, 30 billion atoms

• Datasets differ in domain-specific DFT settings 

Method – Datasets
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• Based on eSEN – an equivariant graph neural network using 

spherical-harmonic node embeddings

• Inputs: 3D atomic positions and atomic numbers (handled by eSEN), 

total charge and spin, DFT task

• Per layer:

• Edgewise convolution → aggregation from neighbors (≤ 6 Å)

• Nodewise feed-forward + residual + normalization

• Outputs: total energy, forces, stress

Method – Architecture
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• Mixture of Experts (MoEs – work well for LLMs):

• Outputs of a block calculated by a set of experts, each with 

their own individual set of weights

• Gating function selects which experts to use – sparse 

activation saves compute

• Mixture of Linear Experts (MoLEs): 

• Simple linear maps – efficiency

• Maintains rotational equivariance when used with eSCN 

convolution – important for force calculations

• Network weights may be precomputed before running 

simulations in some cases – much shorter inference times

Method – Mixture of Linear Experts (MoLEs)
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• Two-stage approach (adopted by UMA-S and UMA-M)

• First stage: directly predict forces (faster training)

• Second stage: remove the force head, fine-tune to predict conserving forces and stresses using auto-grad 

(provide energy conservation and smooth potential energy landscapes)

• Pre-training with BF16 numerical format + fine tuning with FP32 improves accuracy

Method – Training Procedure
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• Iso-FLOPs

• Varying the amount of training data for each model

• Mimima represent optimal model at given level of training compute

Results
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• Log-linear scaling behaviour

• Optimal dense model size – ~700M parameters (UMA-L)

Results
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• Dense vs MoLE

• Smaller MoLE model size is needed to achieve a fixed loss

• Converge at larger model sizes

Results
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• Multi-task vs single-task 

• Effects of the number of experts

Results
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• Inference efficiency

Results
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• Test results on test-sets

Results
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• Test results on important benchmarks 

Results
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• Limitations 

• Long-range interactions – standard MLIP cutoff distance of 6 Å

• Separate embedding for each discrete charge or spin – limited in generalizing to unseen spins and charges

• Large training dataset – 500M atomic structures

• Empirical scaling relations

• Mixture of Linear Experts – increasing model capacity while maintaining inference efficiency

• Strong performance in test-sets and benchmarks

Discussion
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