

UMA: A Family of Universal Models for Atoms

Yu Xie

Content

- 1. Background
- 2. Method
- 3. Results
- 4. Discussion

Background

- DFT's computational expense limits its usage $O(n^3)$
- Machine Learning Interatomic Potentials (MLIPs) have the potential to accurately approximate DFT while being dramatically faster – O(n)
- Current MLIPs are mostly trained on smaller problem-specific datasets limited by computational cost (unlike language and vision models - generalised across diverse data distributions and tasks)
- This paper:
 - A family of Universal Models for Atoms (UMA) a single generalised model
 - Training datasets: 500 million atomic systems, 30 billion atoms
 - Covering materials, catalysis, molecules, molecular crystals and Metal Organic Frameworks (MOFs)
 - Empirical scaling laws relating compute, data and model size
 - Mixture of Linear Experts (MoLE) architecture to improve compute efficiency

Method – UMA Models

Summary of UMA models:

- Small (S): suitable for computationally intensive applications
- Medium (M): most general-purpose model, more accurate than UMA-S
- Large (L): highly accurate, helps understand scaling behaviour

Model	Total Parameters	Active Parameters	Inferences per second for 1k Atoms	Max Atoms per 80GB GPU	Conservative
UMA-S	150M	6M	16	100k +	✓
UMA-M	1.4B	50M	3	10k+	✓
$\mathrm{UMA}\text{-}\mathrm{L}$	700M	700M	1.6	$1\mathrm{k}+$	×

Inference speed and max atoms measured on Nvidia H100 with a periodic system that has ≈ 50 neighbors per atom within 6Å, see Appendix D

Method – Datasets

- 500 million atomic structures, 30 billion atoms
- Datasets differ in domain-specific DFT settings

Method – Architecture

- Based on eSEN an equivariant graph neural network using spherical-harmonic node embeddings
- Inputs: 3D atomic positions and atomic numbers (handled by eSEN), total charge and spin, DFT task
- Per layer:
 - Edgewise convolution → aggregation from neighbors (≤ 6 Å)
 - Nodewise feed-forward + residual + normalization
- Outputs: total energy, forces, stress

Method – Mixture of Linear Experts (MoLEs)

- Mixture of Experts (MoEs work well for LLMs):
 - Outputs of a block calculated by a set of experts, each with their own individual set of weights
 - Gating function selects which experts to use sparse activation saves compute
- Mixture of Linear Experts (MoLEs): $y = \sum_{k} \alpha_k (W_k x)$
 - Simple linear maps efficiency
 - Maintains rotational equivariance when used with eSCN convolution – important for force calculations
 - Network weights may be precomputed before running simulations in some cases – much shorter inference times

$$y = W^*x$$
 where $W^* = \left(\sum_k \alpha_k W_k\right)$

Method – Training Procedure

- Two-stage approach (adopted by UMA-S and UMA-M)
 - First stage: directly predict forces (faster training)
 - Second stage: remove the force head, fine-tune to predict conserving forces and stresses using auto-grad (provide energy conservation and smooth potential energy landscapes)
- Pre-training with BF16 numerical format + fine tuning with FP32 improves accuracy

- Iso-FLOPs
 - Varying the amount of training data for each model
 - Mimima represent optimal model at given level of training compute

- Log-linear scaling behaviour
- Optimal dense model size ~700M parameters (UMA-L)

- Dense vs MoLE
 - Smaller MoLE model size is needed to achieve a fixed loss
 - Converge at larger model sizes

- Multi-task vs single-task
- Effects of the number of experts

Inference efficiency

Atoms	UMA-S (6.6M)	UMA-M (50M)	eSEN-30M- OAM (30M)	Orb-v3 conservative- inf-omat (25M)	MACE- MPA-0 (9M)	MACE- OFF23-L (4.7M)
100	44	21	8	77	38	89
1,000	16	3	1.7	30	24	20
10,000	1.6	0.2	OOM	3.7	2.9	OOM
50,000	0.2	OOM	OOM	OOM	OOM	OOM
100,000	0.1	OOM	OOM	OOM	OOM	OOM

• Test results on test-sets

	Materials						Catalysis				Molecules				Mole	cular cr	ODAC		
Model	WBM Energy/Atom	Forces	Stress	HEA Energy/Atom	Forces	Stress	ID Ads. Energy	Forces	OOD-Both Ads. Energy	Forces	OOD-Comp Energy/Atom	Forces	PDB-TM Energy/Atom	Forces	OMC-Test Energy/Atom	Forces	Stress	OOD-L/T Ads. Energy	Forces
UMA																			
UMA-S	20.0	60.8	4.4	22.0	72.8	3.1	52.1	24.3	70.2	30.9	3.64	10.80	0.88	16.12	0.91	4.77	0.97	292.4	16.0
UMA-M	18.1	51.4	4.3	19.0	62.2	3.2	33.4	16.0	46.5	21.0	3.26	9.09	0.69	10.37	0.82	3.00	0.98	290.2	10.7
UMA-L	17.6	45.5	3.8	24.8	48.3	2.8	32.4	12.2	43.5	15.9	2.33	5.19	0.81	8.76	0.59	2.28	0.10	291.1	6.5
Literature																			
eSEN-OMat [23]	16.2	49.6	4.1	20.0	59.5	3.2	-	-	-	-	-	-	-	-	-	-	-	-	-
eqV2-OMat [5]	14.9	46.3	3.6	20.3	47.0	2.7	-	-	-	-	-	-	-	-	-	-	-	-	-
eqV2-OC20 [45]	-	-	-	-	-	-	149.1	11.6	306.5	15.7	-	-	-	-	-	-	-	-	-
GemNet-OC20 [24]	-	-	-	-	-	-	163.5	16.3	343.3	23.1	-	-	-	-	-	-	-	-	-
eqv2-ODAC [66]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	316.0	7.2
ST Baselines																			
eSEN-S-OMol	-	-	-	-	-	-	-	-	-	-	3.67	11.56	0.79	14.11	-	-	-	-	-
eSEN-S-OMC	-	-	-	-	-	-		-	-	-	-	-	-	-	1.05	5.39	0.94	-	-
Target																			
Practical Utility	10-20	-	-	10-20	-	-	100	-	100	-	1-3	-	1-3	-	1-3	-	-	100	-

	Materials									Catalysis		Molecular Crystals						
Model	Matbench [58] F1	RMSD	MAE [eV/atom]	к.srme [55]	Phonons [46] ω_{max} [K]	Free Energy [kJ/mol]	Elasticity [16, 35] G _{vrh} [GPa]	K_{vrh} [GPa]	NVE MD [23] Conserve	AdsorbML [43] Success Rate	OMol25 [44] Ligand-strain [meV]	PDB-pocket [meV]	Dist-SR [meV]	Dist-LR [meV]	NVE MD [23] Conserve	CSP Targets [30] Lattice Energy [kJ/mol]	Kendall Rank	RMSD [Å]
UMA																		
UMA-S	0.916	0.064	0.020	0.203	17.59	5.00	8.54	4.96	✓	68.35%	4.39	150.3	67.6	432.1	1	2.695	0.82	0.12
UMA-M	0.930	0.061	0.018	0.195	13.91	3.39	8.40	4.76	✓	71.12%	2.45	89.7	41.6	588.7	✓	2.664	0.81	0.13
UMA-L	0.928	0.065	0.018	0.671	78.50	18.20	20.56	14.48	X	74.41%	3.37	71.7	16.6	246.1	×	2.488	0.84	0.12
Literature																		
eSEN-30M-OAM [23]	0.925	0.061	0.018	0.170	15.00	4.00	9.13	5.73	✓	-	-	-	-	-	-	-	-	-
ORB v3 [57]	0.905	0.075	0.024	0.210	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SevenNet-MF-ompa [37]	0.901	0.064	0.021	0.317	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRACE-2L-OAM [8]	0.880	0.067	0.023	0.294	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MACE-MPA-0 [6]	0.852	0.073	0.028	0.412	-	-	-	-	-	-	-	-	-	-	-	-	-	-
eqv2-OC20 [43]	-	-	-	-	-	-	-	-	-	60.80%	-	-	-	-	-	-	-	-
GemNet-OC20 [43]	-	-	-	-	-	-	-	-	-	54.88%	-	-	-	-	-	-	-	-
ST Baselines						· · · · · ·	· · · · · ·							· · · · · ·				
eSEN-S-OMol	-	-	-	-	-	-	-	-	-	-	5.15	154.48	73.02	608.9	✓	-	-	-
eSEN-S-OMC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.18	0.74	0.18

Discussion

- Limitations
 - Long-range interactions standard MLIP cutoff distance of 6 Å
 - Separate embedding for each discrete charge or spin limited in generalizing to unseen spins and charges
- Large training dataset 500M atomic structures
- Empirical scaling relations
- Mixture of Linear Experts increasing model capacity while maintaining inference efficiency
- Strong performance in test-sets and benchmarks

Thank You