

Auto-QChem: an automated workflow for the generation and storage of DFT calculations for organic molecules

Jingyi Liu

29/09/2025

Outline

- 1.Background
- 2. Auto-Qchem workflow
- 3. Applications
- 4. Discussion

Research Background

Research Background

- The application of machine learning models in organic chemistry requires effective representations of chemical structures.
- ML models trained with chemical descriptors are more interpretable than molecular fingerprints and other representations.
- High throughput DFT presents a significant barrier to experimental chemists.

 Previous DFT automation packages are mainly designed for material science rather than small organic molecules.

- An automatic, high-throughput and end-to-end DFT calculation workflow
- Computes chemical descriptors for organic molecules

^{[1] &}lt;a href="https://github.com/PrincetonUniversity/auto-qchem">https://github.com/PrincetonUniversity/auto-qchem;

^[2] https://princetonuniversity.github.io/auto-qchem

^[3] https://autoqchem.org

Auto-Qchem workflow

Features

- 1. Generate user-specified input.
- 2. HPC interface.
- Automatic information extraction from DFT results.
- Convenient storage and data accessing.

Fig. 1 Computational workflow of Auto-QChem.

Fig. 1 Computational workflow of Auto-QChem.

Features

Avoid duplicate calculations

Features: Queries and data retrieval

> 1692 molecules in total

Fig. 3 Query view (left) and the molecule view (right) of the web interface. The molecule view is a snapshot while viewing the second lowest energy conformation in 3D.

1. Substrate scope design in Ni/ photoredox methodology development

- Ni/ photoredox catalyzed alkylation reaction of aryl halides using acetals as alcohol-derived aliphatic radical sources.
- Data set: 2683 aryl bromides, with 168 electronic and steric features,
- 95 of 168 features were employed for clustering.

1. Substrate scope design in Ni/ photoredox methodology development

- Electronegativity of the aryl bromides was highly correlated with yield.
- Generalized additive model (GAM) trained on electronegativity outperformed ML models trained on literatures

- 2. Ligand parametrization and enantioselectivity prediction in nickel catalysis
 - Previous used ligand: Bioxazoline (BiOx)
 - · Good enantioselectivity, low yield
 - Optimal ligand: chiral biimidazoline (Bilm): time-consuming to discover

(a). Model reaction system and representative examples of ligands tested.

(b). Ligand environment models.

L*Ni(p-tolyl)Cl complex

2. Ligand parametrization and enantioselectivity prediction in nickel catalysis

(b). Ligand environment models.

- Hypothesis: computed features depend on ligand environment.
- Manually generated conformers ← Auto-Qchem cannot handle transition metal complexes
- Conclusion: electronic, rather than steric attributes of Bilm ligands govern the enantioselectivity of this reaction

(c). Regression modeling for L*Ni(p-tolyl)Cl with DFT-derived features.

3. Reaction condition optimization via Bayesian optimization

- Traditional reaction optimization is slow and resource-intensive, relying on trial-and-error or costly methods, with limited exploration of chemical space.
- Bayesian optimization, a sequential design algorithm for global optimization of black-box functions, in efficient reaction condition optimization.
- EDBO (Experimental Design via Bayesian Optimization)

3. Reaction condition optimization via Bayesian optimization

(b). HTE study of Pd-catalyzed C-H arylation of imidazoles.

PCy ₃	CgMePPh	PPh ₃	GorlosPhos
XPhos	BrettPhos	t-BuPh-CPhos	PPh(t-Bu) ₂
PPh ₂ Me	PPhMe ₂	P(fur) ₃	JackiePhos

Ligand

Fig. 6 Use case 3: reaction condition optimization via Bayesian optimization.

3. Reaction condition optimization via Bayesian optimization

(a). the general optimization workflow of EDBO.

EDBO (simulated 50 times) achieved a higher average performance within the first 15 experiments even with random initialization and found conditions with >99% yield 100% of the time!

Discussion

Limits

- Cannot generate accurate conformers for transition metal complexes and molecules with non-canonical bonds.
- Lack of supports for other cluster schedulers

Future perspective

- External packages support
- Data insufficiency

Questions? Comments?

Thank You