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Research Background

 As computational simulations now achieve near-experimental accuracy,
they are transitioning from auxiliary interpretative tools to a central
paradigm for discovery in the life sciences.

* Molecular dynamics (MD) plays an essential role:

—> classical MD
e{ab inition MD (AIMD) ] Accurate but face scalability challenges

—>|machine learning force field (MLFFs)

« Key challenges for biomolecular simulations:
—> Diversity of conformational space
—> Data scarcity due to time and cost of dataset generalization
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AlI2BMD Atrtificial intelligence-based ab initio biomolecular dynamics system

A generalizable solution for efficiently simulating a wide range of full-atom proteins with ab initio

accuracy, surrounded by an explicit solvent modelled by a polarizable force field.

» A generalizable protein fragmentation approach splits proteins into overlapped protein

units.

> Based on ViSNet', calculates the energy and atomic forces for the protein with ab initio

accuracy.

» Exhibits good alignment with wet-lab experimental data, such as the melting temperature

of fast-folding proteins.

» Detects different phenomena than molecular mechanics (MM)

[1] Nat. Commun. 2024, 15, 313.



AlI’BMD workflow



AI’BMD workflow

: = , Ab initio accuracy
' High
QT ' )
S - s < 2}
izl 4 z
— Trajectories: Low
Proteins AIPBMD potential t+ At — ... >t +nAt T
\ / \ / Kinetics
Fragmentation Modelling Calculation Simulation — gy
o ) U
all 42 Thermodynamics
C
2c
< 9o
8o
g & 7
&) EOS
Low High
T
Protein units Datasets Energy and atomic forces m

Wet-lab experiment alignment

1. Fragmenting proteins into smaller units, specifically dipeptides, calculate intra-
and inter-unit interactions.

2. Assemble them to determine the protein energy and forces acting on the atoms
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1. 21 protein units, with atomic number ranging from 12-36

Comprehensive AIMD conformation sampling by = 20.88 million samples
scanning main-chain dihedrals 8
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ViSNet models are trained, encoding physics-informed molecular representations and
calculates four-body interactions with linear time complexity.
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ViSNet models are trained, encoding physics-informed molecular representations and
calculates four-body interactions with linear time complexity.
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Model generates precise energy and atomic forces based on atom types and

coordinates
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MD simulation system with polarized solvent were developed and applied for 9
proteins with number of atoms ranging from 175-13728.
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Comparison on running time per simulation step for proteins solvated with a 10 A water box

Atom Atom < N\, Tinker Amber
2 (
Protein number of number of A (lz;\AD DZ\;‘D All(esgirol Amoeba FF19S
protein  system | (s) B(s)
|
Chignolin 175 4715 0.047 0.040 0.238 | 0.117 0.004
|
Trp-cage 281 6,067 0.052 0.055 0.322| 0.136 0.005

WW domain 571 10,678 0.070 0.095 0626, 0.196 0.008

0106 0712'1 0208 0.008

e — — — — — —— — — — — — — — — —

ABD 746 11,793 0.085 |
PACSIN 3 1,040 17,923 0.106 0.162 - : 0.292 0.011
SS00941 2,450 44,401 0.213 0.414 - : 0.699 0.027
APC 5,292 54,999 0.449 0.580 - |, 0.938 0.033
Polyphosphat |

. 11,404 97,657 0.966 - - |\ 1.487 0.058
e Kinase \ Z —

Al tools

AI2BMD outperformed other Al-driven simulation tools such as DPMD and Allegro.
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1. Conformational space exploration
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Examination of hydrogen bonding between water and the asparagine dipeptide (Ace-N-Nme) dipeptide.

AI2BMD demonstrated an energy distribution much more consistent with QM—-MM than
MM in bond scanning!
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1. Conformational space exploration

AI2BMD simulations for protein units and comparisons with NMR experiments
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AI2ZBMD is much more consistent

with QM-MM than MM
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1. Conformational space exploration

Analysis of chignolin dynamics by AI2BMD simulations
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Simulations performed by AI?2BMD exhibit

similar structure fluctuations with MM

AI’BMD can detect both meaningful
conformational changes and detailed
interatomic interactions to study
protein dynamics.
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2. Protein property estimation

Comparison of the change of enthalpy, heat capacity and free energy of two-state proteins, barnase and CI2.
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Conclusion and perspectives
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Discussion

»> AlI2BMD

* Expands ab initio calculation from a small preset QM region to the whole full-
atom protein without any prior knowledge.
« Eliminates the potential incompatibility of QM and MM mechanics on the
boundary for proteins and accelerates QM region calculation.
« Offer opportunities with new perspectives for complex biomolecular dynamics

that QM-MM cannot deal with.

* Exhibits generalization ability based on fundamental assembling principles
that most proteins are composed of common kinds of amino acid, which can
be expanded to other biochemical systems such as lipids, nucleotides,

nanomaterials and solute-solvent interfaces.
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Questions? Comments?
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