

Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform

Huiwen Tan
29 Jan 2026

Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform

M. Álvarez-Moreno,^{*,†,‡} C. de Graaf,^{‡,||} N. López,[†] F. Maseras,^{†,§} J. M. Poblet,[‡] and C. Bo^{*,†,‡}

[†]Institute of Chemical Research of Catalonia, ICIQ, Av. Països Catalans 16, 43007 Tarragona, Catalonia, Spain

[‡]Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain

[§]Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain

^{||}Catalan Institution for Research and Advanced Studies, ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain

Background

- **Computational chemistry generates massive data**

These data are hardly usable by any person other than the creator himself

- **Current challenges**

Data often not shared, poorly organized, or not machine-readable

Extracting results to generate tables and figures from raw outputs is largely manual and labor-intensive

Limited compliance with FAIR (Findability, Accessibility, Interoperability, Reusability) standards

FAIR Challenges in Computational Chemistry Data

Findable

Data and metadata are uniquely identifiable and locatable, making them easy to find with search tools.

Most computational data are stored in SI or local folders

Interoperable

Data uses standard formats, allowing different systems and tools to understand and exchange it.

Heterogeneous formats, software-dependent raw outputs

Accessible

Data is retrievable, though access might be restricted (e.g., behind a login); metadata should always be open.

Data is often not publicly released, requiring direct contact with authors

Reusable

Data is well-documented with enough metadata to allow users to understand its origin, methodology, and any potential limitations.

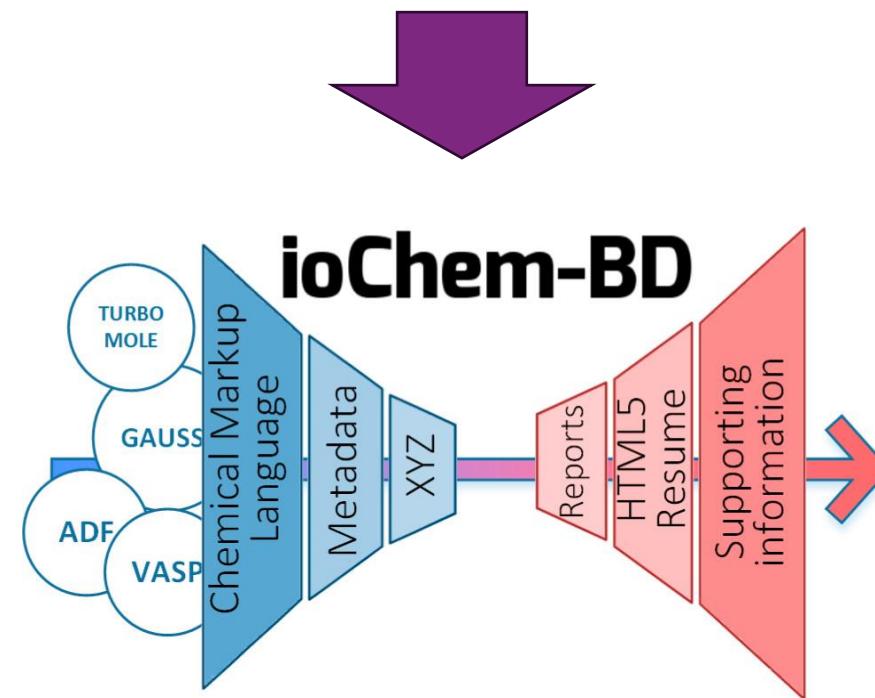
Missing metadata, provenance, and standardized format

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Research data for this article

 Data not available / Data will be made available on request



Most computational data are stored in SI or local folders

Motivation

Computational Chemists need structured, searchable, and reusable computational chemistry databases

Search by

Text

Enter search term

Find

Sign up

Login

Download

Docs

Open your research to the world

ioChem-BD - The Computational Chemistry Results Repository

1

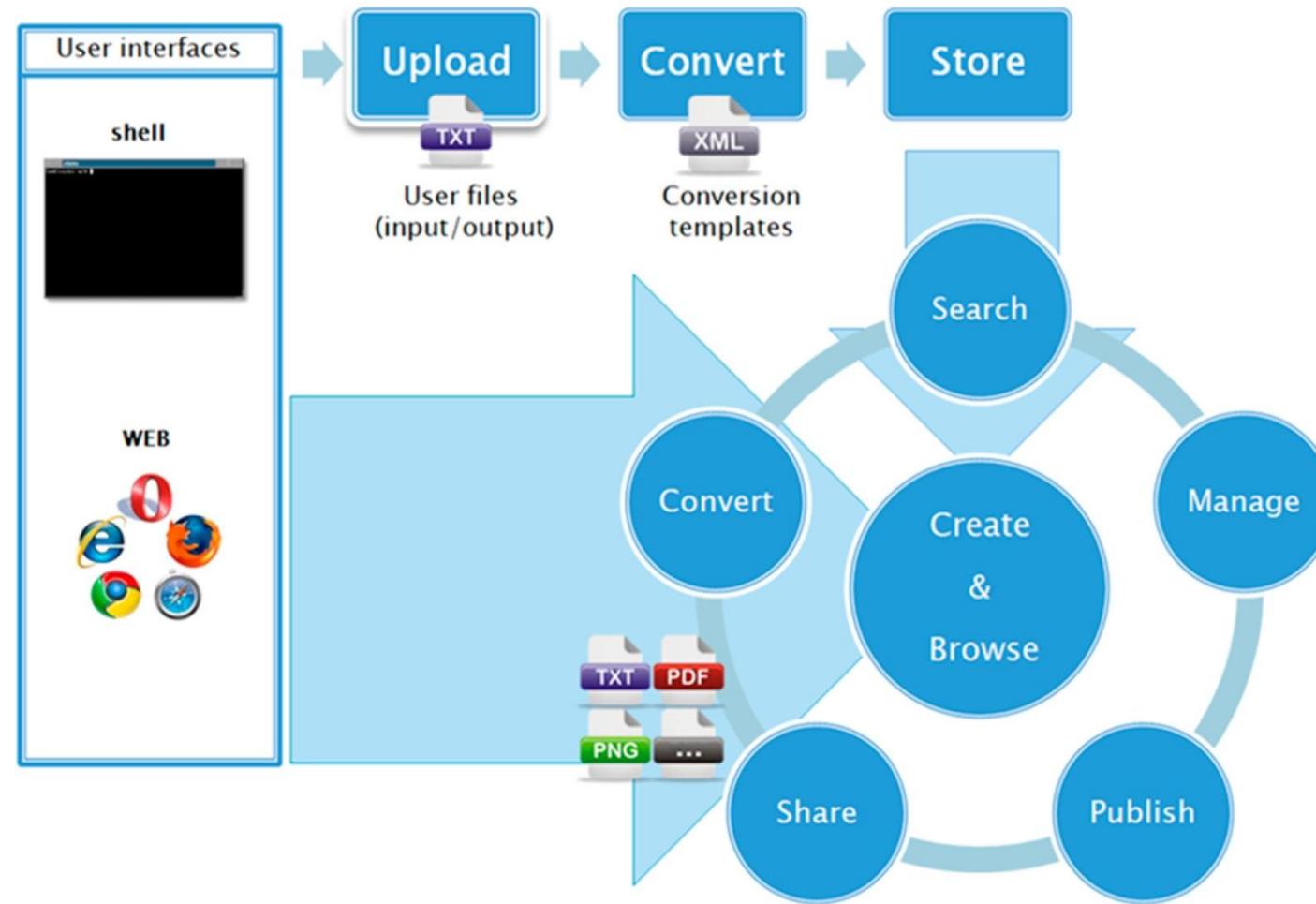
Central service

7

Connected nodes

1,006

Collections available


389,954

Items indexed

Funded by
the European Union

ioChem-BD System Overview

eXtensible Markup Language (XML)

- **What is XML?**

Structured, hierarchical, self-describing data format

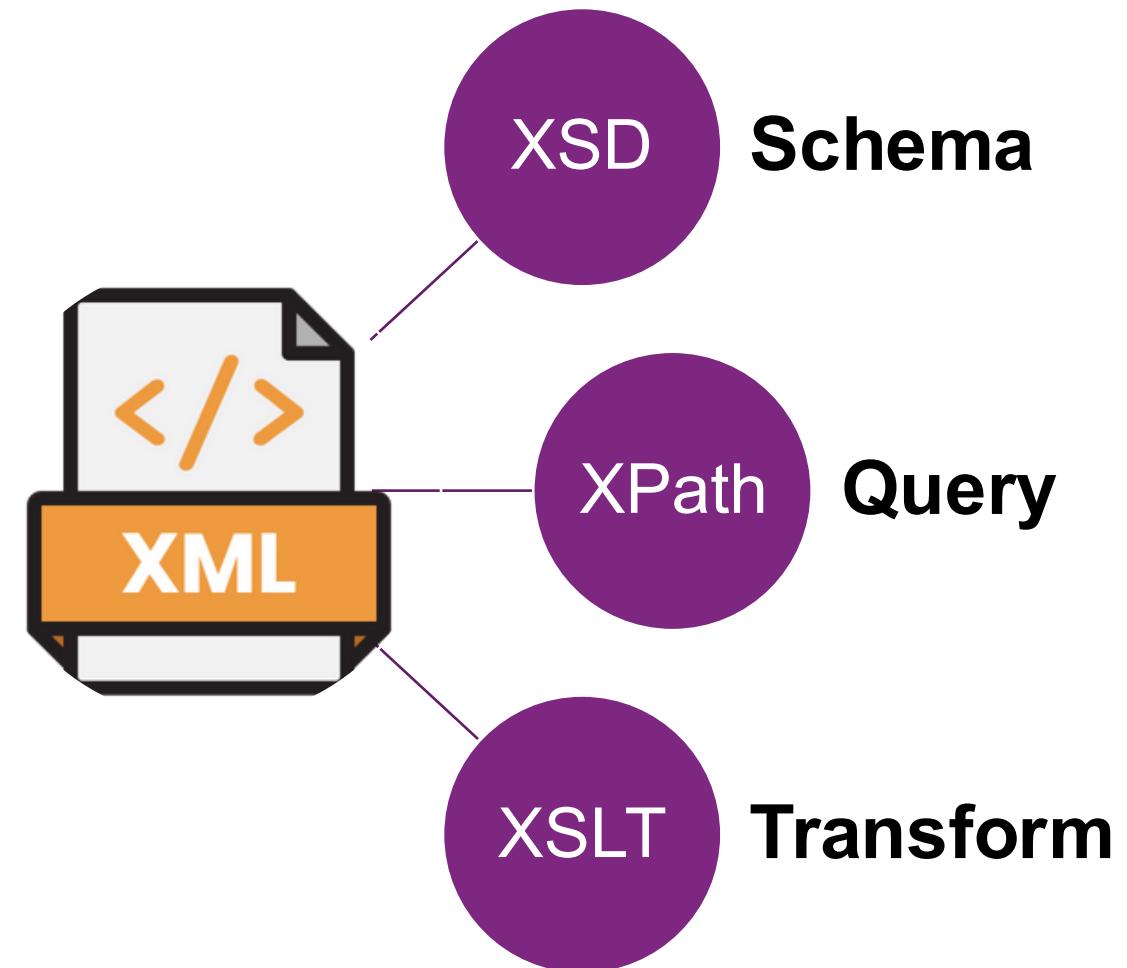
Machine-readable and human-readable

- **XML Ecosystem**

XSD: schema validation (enforce data structure)

XPath: query language for XML trees

XSLT: rule-based transformation (XML → HTML/CSV/PDF)


- **Why XML in ioChem-BD?**

Format neutrality and long-term interoperability

Validated and semantically extensible (CML)

XML

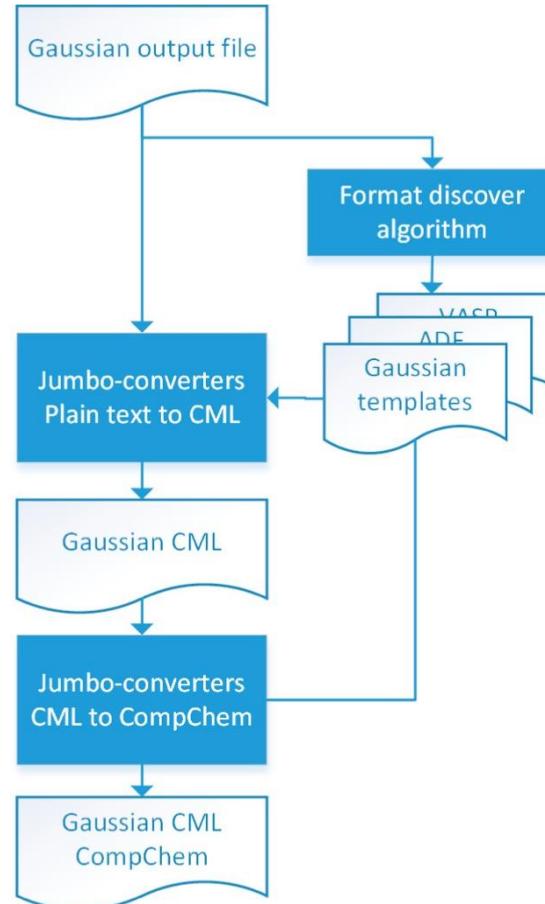
```
<calculation>
  <method>B3LYP</method>
  <basis>def2-TZVP</basis>
  <energy units="Hartree">-123.456</energy>
</calculation>
```


Chemical Markup Language (CML)

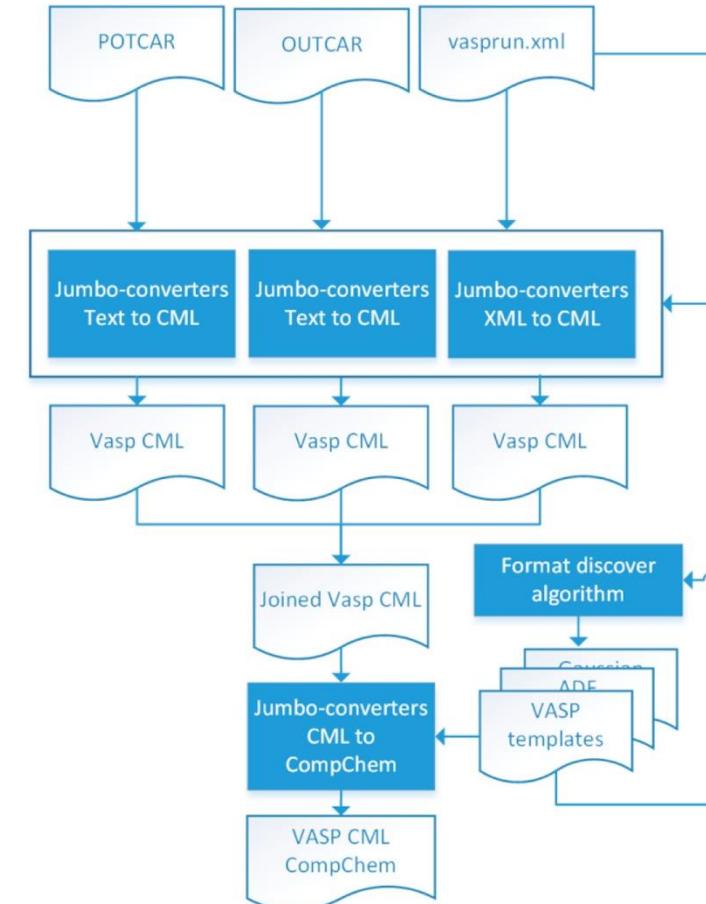
- CML extends XML with standardized chemical concepts (molecules, atoms, bonds, computational metadata)
- However, later replaced by simpler, programmatic workflows (JSON, Python, HDF5)
- **CML pipeline**

Quantum chemistry output → CML (XML) → XSLT → Reports / knowledge graphs / databases

- **Modern pipeline**


Quantum chemistry output → Python parser → ORM objects → SQL database

XML


```
<molecule>
  <atomArray>
    <atom id="a1" elementType="C" x3="0.0" y3="0.0" z3="0.0"/>
  </atomArray>
</molecule>
```

```
<molecule cmlx:templateRef="mol"
  formalCharge="0"
  id="zmat"
  spinMultiplicity="1">
  <atomArray>
    <atom elementType="O"
      id="a1"
      x3="-1.07419"
      y3="0.95647"
      z3="0.0000"/>
    <atom elementType="H"
      id="a2"
      x3="-0.26225"
      y3="0.3896"
      z3="0.0000"/>
    <atom elementType="H"
      id="a3"
      x3="-1.82642"
      y3="0.31246"
      z3="0.0000"/>
  </atomArray>
  <bondArray>
    <bond atomRefs2="a1 a3" order="S"/>
    <bond atomRefs2="a1 a2" order="S"/>
  </bondArray>
  <formula concise="H2O"/>
  <property dictRef="cml:molmass">
    <scalar units="unit:dalton">15.9994</scalar>
  </property>
  <list cmlx:templateRef="charge">
    <list>
      <scalar dataType="xsd:integer" dictRef="g:charge">0</scalar>
      <scalar dataType="xsd:integer" dictRef="g:mult">1</scalar>
    </list>
  </list>
  <formula convention="iupac:inchi" inline="InChI=1S/H20/h1H2">
    <scalar dataType="xsd:integer" id="auxInfo">AuxInfo=1/0/N:1/rA:30HH/rB:s1;s1;/rC:;;;</scalar>
  </formula>
</molecule>
```

Conversion Workflow from Output Files to CML

Gaussian and ADF: single output file

VASP: a group of output files

Create Module Overview

ioChem-BD Create

Navigation/Edition Search Reports

3D Structure View Results Download RAW CML

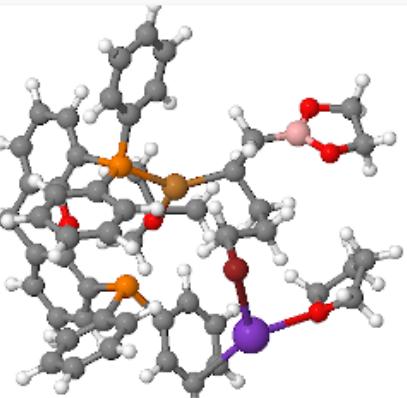
Refresh Type Description Creation Date Handle Pub. Edit

- Fe(III)_Keggin_structures PRO Fe(III) Keggin structures 2018-06-14 11:09
- kimik2222 PRO - 2018-03-07 15:35
- Aromatic_Amination_of_Lactones PRO Aromatic_Amination_of_Lactones 2018-06-14 11:07
- calc1 ADF calc1 2018-01-16 17:10
- hexenol_modified GAU hexenol 2018-04-12 18:18
- hexenol4 GAU hexenol4 2018-04-12 18:55
- hexenol33 GAU hexenol3 2018-04-12 18:40
- hexenol5 GAU hexenol5 2018-04-12 19:08
- hexenol6 GAU hexenol6 2018-04-12 19:18
- h2 GAU h2 2018-06-18 08:32
- calc GAU calc 2018-06-20 17:31
- gaussian_calc GAU - 2016-10-24 16:03
- calc GAU calc 2017-02-14 16:44
- calc1 GAU calc1 2017-08-04 09:48
- K-Br-C4-1THF-i5** GAU K-Br-C4-1THF-i5 2017-12-23 10:57
- upload_sm1 GAU uploadsm1 2017-12-23 10:59
- upload_sm12 GAU uploadsm12 2017-12-23 11:07
- upload_sm13 GAU uploadsm13 2017-12-23 11:08
- upload_sm14 GAU uploadsm14 2017-12-23 11:08
- Mo(I)_hydrogen_generation_... PRO Mo(I)_hydrogen_generation 2018-06-14 11:10
- ocurb GAU ocurb 2017-09-04 11:48
- calc1_2 GAU calc1 2017-09-06 11:06
- hexenol2 GAU hexenol2 2018-04-12 18:33
- sample2 GAU sample2 2018-10-15 19:15
- Ni_catalyzed_aryl_borylation_RM PRO Ni_catalyzed_aryl_borylation_RM 2018-06-14 11:11
- adf ADF adf 2015-07-13 19:12
- ts_bp-uff GAU ts_bp-uff 2015-07-08 18:40
- g09 GAU g09 2015-07-09 19:13
- vasp_demo VSP vasp_demo 2015-07-09 20:02
- geomopt2012 ADF geomopt2012 2015-07-09 20:03
- adf1 ADF adf1 2015-07-13 20:31
- gaussian1 GAU gaussian1 2015-07-13 20:32
- vasp1 VSP vasp1 2015-07-13 20:32
- opt10 VSP opt10 2015-07-13 20:35
- freq ADF freq 2015-07-13 20:39
- geomopt2 ADF geomopt2 2015-07-09 19:15

Properties

Path /db/testuser/Fe(III)_Keggin_structures/K-Br-C4-1THF-i5

Name K-Br-C4-1THF-i5 Type GAU


Description K-Br-C4-1THF-i5 State modified

Concept Group

Owner Group cbo_group Permissions rw—

Creation date Mod. date Pub. date

Create Project Modify

JSON

Create Module Overview

Navigation/Edition | Search | Reports

	Type	Description	Creation Date	Handle	Pub. Edit
Fe(III)_Keggin_structures	PRO	Fe(III) Keggin structures	2018-06-14 11:09		
kimik2222	PRO	-	2018-03-07 15:35		
Aromatic_Amination_of_Lactones	PRO	Aromatic_Amination_of_Lactones	2018-06-14 11:07		
calc1	ADF	calc1	2018-01-16 17:10		
hexenol_modified	GAU	hexenol	2018-04-12 18:18		
hexenol4	GAU	hexenol4	2018-04-12 18:55		
hexenol33	GAU	hexenol3	2018-04-12 18:40		
hexenol5	GAU	hexenol5	2018-04-12 19:08		
hexenol6	GAU	hexenol6	2018-04-12 19:18		
h2	GAU	h2	2018-06-18 08:32		
calc	GAU	calc	2018-06-20 17:31		
gaussian_calc	GAU	-	2016-10-24 16:03		
calc	GAU	calc	2017-02-14 16:44		
calc1	GAU	calc1	2017-08-04 00:48		
K-Br-C4-1THF-15	GAU	K-Br-C4-1THF-15	2017-02-21 10:53		
upload_smi	GAU	uploadsmi	2017-02-21 10:55		
upload_smi2	GAU	uploadsmi2	2017-12-23 11:07		
upload_smi3	GAU	uploadsmi3	2017-12-23 11:08		
upload_smi4	GAU	uploadsmi4	2017-12-23 11:08		
Mo(0)_hydrogen_generation_	PRO	Mo(0) hydrogen generation	2018-06-14 11:10		
eucurb	GAU	eucurb	2017-09-04 11:48		
calc1_2	GAU	calc1_2	2017-09-06 11:06		
hexenol2	GAU	hexenol2	2018-04-12 18:33		
sample2	ADF	sample2	2018-10-15 19:15		
Ni_catalyzed_aryl_borylation_RM	PRO	Ni_catalyzed_aryl_borylation_RM	2018-06-14 11:11		
adf	ADF	adf	2015-07-13 19:12		
ts_bp-uff	GAU	ts_bp-uff	2015-07-08 18:40		
g09	GAU	g09	2015-07-09 19:13		
vasp_demo	VSP	vasp_demo	2015-07-09 20:02		
geomopt2012	ADF	geomopt2012	2015-07-09 20:03		
adf1	ADF	adf1	2015-07-13 20:31		
gaussian1	GAU	gaussian1	2015-07-13 20:32		
vasp1	VSP	vasp1	2015-07-13 20:32		
opt10	VSP	opt10	2015-07-13 20:35		
freq	ADF	freq	2015-07-13 20:39		

3D Structure | View Results | Download | RAW CML

Item actions

Properties

Path: /db/testuser/Fe(III)_Keggin_structures/K-Br-C4-1THF-15

Name: K-Br-C4-1THF-15 | Type: GAU | State: modified | Concept Group: | Permissions: RW- | Last Date: 2018-06-14 11:11

Description: K-Br-C4-1THF-15

Owner: | Group: | Last Date: 2018-06-14 11:11

Creation date: 2017-12-23 10:53 | Modified date: 2018-06-14 11:11

Create Project | Modify |

Item details

Uploading to Create

Properties

Path	/db/testuser		
Name	acetate		
Description	Acetate molecules		
Owner	Group	Permissions	State
Creation date	Mod. date	Pub. date	Concept Group

Create Project **Modify** **Trash**

Creating a project

Calculation upload

Name:	<input type="text"/>
Description:	<input type="text"/>
Type:	<input checked="" type="radio"/> Gaussian <input type="radio"/> ADF <input type="radio"/> Vasp <input type="radio"/> Turbomole <input type="radio"/> Orca <input type="radio"/> Molcas <input type="radio"/> QuantumEspresso
<input type="radio"/> Mopac <input type="radio"/> Mopac	
Input file* <input type="text" value="a-siw12_2.com"/>	
Output file* <input type="text" value="a-siw12_2.log"/>	
Files:	<input type="text" value="Additional file -"/>

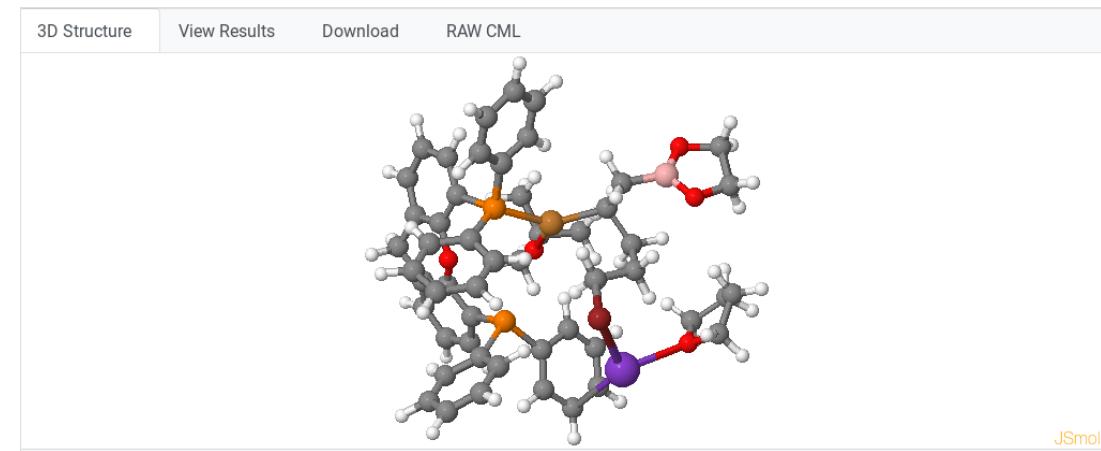
*Required

Upload Calculations

Item Actions frame

3D Structure View Results Download RAW CML

output.cml.html

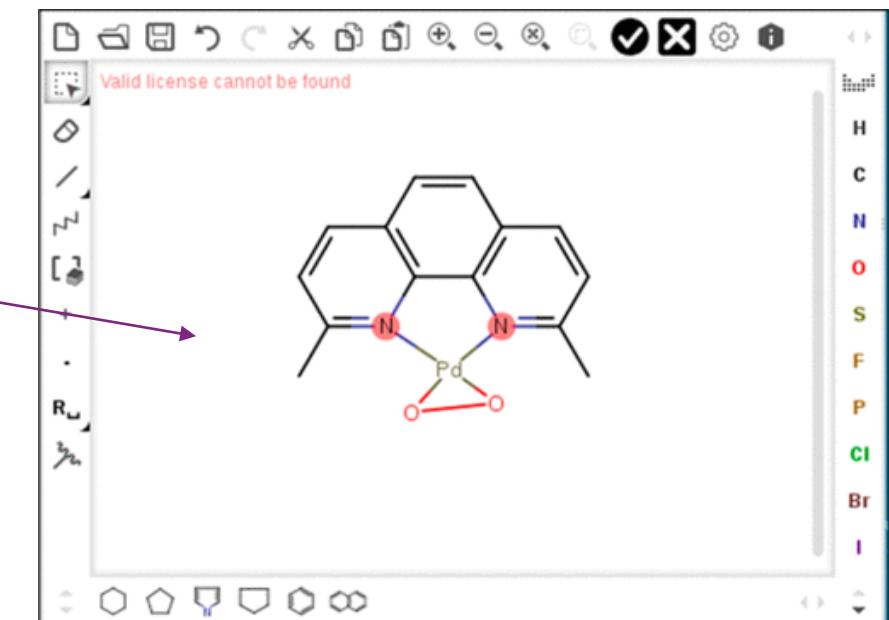

GENERAL INFO

Title: upload_sni
 Program: Gaussian 09 ES64L-G09RevD.01
 Formula: C₅₂H₅₈BBrCuO₅P₂K
 Calculation type: Geometry optimization Minimum
 Method(s): RwB97XD - Grimme-D2
 Temperature 298.150 K
 Pressure 1.00000 atm

ATOM INFO

Atomic coordinates [Å] (optimized)

ATOM	x	y	z	TYPE	Core	ECP
1	Cu	0.2319	1.4549	-0.6657 lanl2dz	+	+
2	C	3.2566	-0.0165	0.6511 6-31g(d)		
3	P	-1.4161	-1.9130	0.0031 lanl2dz	+	+
4	P	-1.6259	2.1612	0.6160 lanl2dz	+	+
5	C	-2.3341	1.2641	2.0654 6-31g(d)		
6	C	-3.2503	-0.2076	4.2710 6-31g(d)		
7	C	-1.4320	0.6455	2.9376 6-31g(d)		
8	C	2.7022	1.1463	2.2214 6-31g(d)		



3D Structure	View Results	Download	RAW CML	File name	Mimetype	Size (kB)
Download				output.cml	chemical/x-cml	7,364.14
Download				K-Br-C4-1THF-I5.in	chemical/x-gaussian-input	7.29

Search Mode

Navigation/Edition	Search	Reports
Name	<input type="text"/>	AND <input type="button" value="▼"/>
Description	<input type="text"/>	AND <input type="button" value="▼"/>
Geometry	<input checked="" type="radio"/> Contains <input type="radio"/> Exact <input type="radio"/> Similar <input type="button" value="Draw"/> <input type="text" value="SMILES, InChI or InChIKey"/>	AND <input type="button" value="▼"/>
Elements	<input type="button" value="Select"/>	AND <input type="button" value="▼"/>
Type	<input type="button" value="ALL"/> <input type="button" value="▼"/>	AND <input type="button" value="▼"/>
Path	<input type="text"/>	AND <input type="button" value="▼"/>
Owner	<input type="button" value="Select"/>	AND <input type="button" value="▼"/>
Group	<input type="button" value="Select"/>	AND <input type="button" value="▼"/>
Creation dates	<input type="text"/> <input type="button" value="Start"/> <input type="button" value="End"/> <input type="button" value="▼"/>	AND <input type="button" value="▼"/>
Concept group	<input type="text"/>	AND <input type="button" value="▼"/>
<input type="button" value="Search"/>		

Generating Supporting Information

ioChem-BD Create

Navigation/Edition Search Reports Options Browse

New report

Supporting information

Reaction energy profile

Description: Biverdazyl project description

Type: Supporting information

Creation Date: 2020-02-03

2 acetic project report

Description: Project description

Type: Supporting information

Creation Date: 2020-02-03

Atom X Y Z

1 N 1.5745 11.9544 0.2578

2 O 3.5569 10.1230 0.8174

3 O 0.5052 9.5932 1.2384

4 O 1.9285 11.8781 2.9799

5 Cl 5.4954 8.2247 -0.4089

6 Cl 6.3066 12.2783 -3.9360

7 Cl -1.9124 7.9845 1.7676

8 Cl -3.6789 10.2164 -2.8700

9 Cl 2.8772 13.2869 5.3967

10 Cl 0.7126 17.6434 2.9467

11 C 2.8167 12.7190 -0.0468

12 H 3.2253 13.0801 0.9017

13 H 2.5604 13.5928 -0.6570

14 C 3.8543 11.8921 -0.7534

15 C 4.1557 10.6120 -0.2450

16 C 5.1226 9.8747 -0.9478

17 C 5.7885 10.3599 -2.0604

18 H 6.5311 9.7566 -2.5657

19 C 5.4651 11.6289 -2.5051

20 C 4.4996 12.3948 -1.8763

21 H 4.2457 13.3786 -2.2532

22 C 1.0903 11.2824 -0.9774

23 H 1.8361 10.5374 -1.2666

Report details

Supporting information

Energy type:

Potential Energy

Default Units:

kcal/mol kJ/mol eV Eh

File format:

PDF RTF

Report configuration

Report selected calculations

Generate Save Save and close

M06_2x

Int_1

Energy (POTENTIAL) = -40869.05584703487 eV

Atom	X	Y	Z
1	N	1.5745	11.9544
2	O	3.5569	10.1230
3	O	0.5052	9.5932
4	O	1.9285	11.8781
5	Cl	5.4954	8.2247
6	Cl	6.3066	12.2783
7	Cl	-1.9124	7.9845
8	Cl	-3.6789	10.2164
9	Cl	2.8772	13.2869
10	Cl	0.7126	17.6434
11	C	2.8167	12.7190
12	H	3.2253	13.0801
13	H	2.5604	13.5928
14	C	3.8543	11.8921
15	C	4.1557	10.6120
16	C	5.1226	9.8747
17	C	5.7885	10.3599
18	H	6.5311	9.7566
19	C	5.4651	11.6289
20	C	4.4996	12.3948
21	H	4.2457	13.3786
22	C	1.0903	11.2824
23	H	1.8361	10.5374

Generating Reaction Energy Profile

ioChem-BD Create

Navigation/Edition Search Reports Favourable Martin wB97xD x

Id: 520 Creation date: 2019-07-16

Name: Favourable Martin wB97xD

Title: Favorable Martin wB97xD without entropy corrections

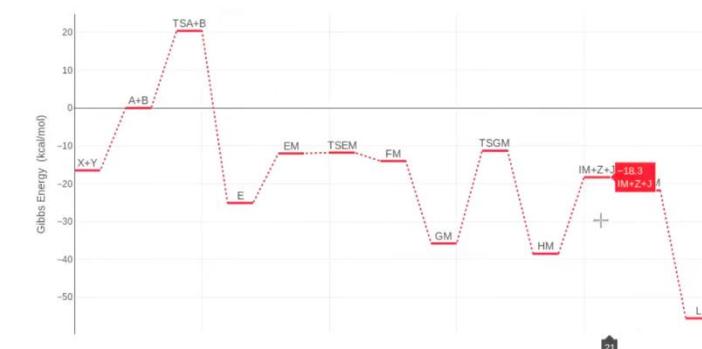
Description: Favorable Martin wB97xD without entropy corrections

Calculations: Add Navigation selected calculations

Order	Calculation absolute path	Title	Name	Path
1	/db/amatoe/Favourable_Martin/NICOD	NICOD		
2	/db/amatoe/Favourable_Martin/COD	COD		
3	/db/amatoe/Favourable_Martin/Fluorobenzene	Fluorobenzene		
4	/db/amatoe/Favourable_Martin/Cat	Cat		
5	/db/amatoe/Favourable_Martin/TS1_bis	TS1_bis		
6	/db/amatoe/Favourable_Martin/1Int_cis_bis	1Int_cis_bis		
7	/db/amatoe/Favourable_Martin/phosphine	phosphine		
8	/db/amatoe/Favourable_Martin/Int1_1_mono	Int1_1_mono		
9	/db/amatoe/Favourable_Martin/TS1iso1_mono	TS1iso1_mono		
10	/db/amatoe/Favourable_Martin/Int1_2_mono	Int1_2_mono		
11	/db/amatoe/Favourable_Martin/adduct	adduct		
12	/db/amatoe/Favourable_Martin/Prev_TS2_adduct_mono	Prev_TS2_adduct_mono		
13	/db/amatoe/Favourable_Martin/TS2_adduct_mono	TS2_adduct_mono		
14	/db/amatoe/Favourable_Martin/Post-TS2-adduct-mono	Post-TS2-adduct-mono		
15	/db/amatoe/Favourable_Martin/NaFBOPh	NaFBOPh		
16	/db/amatoe/Favourable_Martin/Int2_1mono	Int2_1mono		
17	/db/amatoe/Favourable_Martin/TS3_mono	TS3_mono		
18	/db/amatoe/Favourable_Martin/BnepBenzene	BnepBenzene		

Energy reaction profile

Energy type: Potential Energy Gibbs Energy Zero Point Energy Corrected Enthalpy


Default Units: kcal/mol kJ/mol eV Eh

File format: CHART

Serie

Name:	Step	Variables:
Serie		R1 c3+c4
Steps:	c1+2*c7-(c4+2*c2)	X+Y
0	A+B	R c3+c4+c11
c5-R1	TSA+B	Variable Formula
c6-R1	E	Variable Formula
c8+c7-R1	EM	Variable Formula
c9+c7-R1	TSEM	
c10+c7-R1	FM	
c12+c7-R	GM	
C13+c7-R	TSGM	
c14+c7-R	HM	
c16+c7+c15-R	IM+Z+J	
c17+c7+c15-R	TSIM	
c18+c15+c4-R	L	
Formula	Label	
Formula	Label	

Generate **Save** **Save and close**

*Any modification done to this chart using Plotly Chart Studio won't be saved at ioChem-BD platform.

Series	Step	Step	Step	Step	Step	Step	Step	Step	Step	Step	Step	Step	Delta
X+Y	-16.5												
A+B	0	20.4	-25.1	-12	-11.8	-14	-35.8	-11.3	-38.5	-18.3	-21.8	-55.6	36.9

Publish Datasets into Browse

Fe(III) Keggin structures PRO Fe(III) Keggin structures

- Navigation RO
- Expand all RO
- Collapse all RO
- Search from here... AU
- Select child elements AU
- Browse module AU
- Publish** AU
- Generate report AU

1. DATASET TYPE

Independent Dataset **Linked to Manuscript**

DOI (Digital Object Identifier)
10.1021/gi500593j

Article Title
Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platfo

Journal
Journal of Chemical Information and Computer Science

Manuscript is a pre-print (not yet published)

Publish Selected Elements

Publish project **ni7** (4 calculations) to:
Vladimir Fock research group

1. DATASET TYPE
Independent Dataset Linked to Manuscript

2. AUTHORS & AFFILIATIONS
Type to search or add, then click Add
Zavala, Damion

3. SPONSORING AGENCIES / INSTITUTIONS
Enter sponsoring agency or institution name, then click Add
Foo Bar organization

PROJECT CODE
Enter project code (optional)

4. DISCOVERY
Type to search or add, then click Add

5. PUBLICATION OPTIONS
 Request a DOI for published project Embargo published elements, content restricted only to reviewers.

Cancel **Publish Data**

Publication Resume

Publication Successful

Project **ni7** has been published.

4 Calculations Published **DOI Not Requested**

VIEW PUBLISHED PROJECT
ni7
<https://test.iochem-bd.org:8443/browse/handle/100/473> **View**

PEER REVIEW ACCESS LINK
ni7
<https://test.iochem-bd.org:8443/browse/review-collection/100/473...> **Copy**

PROJECT MANAGEMENT
ni7
Modify properties or lift embargo **Open Editor**

All administrative actions and links can be accessed anytime by clicking on the **edit icon** placed on the right side of each published collection.

Close Resume

Browse Published Datasets in the Community

ioChem-BD Browse

Search Browse Search Browse Log in as sharonlester@loch... Create

Foo Bar organization / Vladimir Fock research group

dmabn Collection home page

Share - copy and redistribute the material in any medium or format. Adapt - remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms.

This dataset derived results are published in:
Manuscript title: A Metal-Free Synthesis of N-Aryl Carbamates under Ambient Conditions
Journal: Angew. Chem. Int. Ed.
DOI: 10.1002/anie.201504956

ROOT (1)
 ↴ **tdft (1)**
 ↴ **freq (1)**
 ↴ **tdhf (1)**

View as Tree List Search:

Preview	Title	Issue Date	Author(s)	Program	Calculation type	Method
	turbomole	3-Feb-2020	Lester, Sharon	TURBOMOLE; 6.4	Restricted geometry optimization	DFT

Discover

Author: Lester, Sharon (1)
 Program name: TURBOMOLE (1)
 Date issued: 2020 (1)
 Calculation type: Geometry optimization Excited states (1)
 Geometry optimization Minimum Energy (1)
 Restricted geometry optimization (1)
 Single point Excited state (1)
 Method: DFT (1)
 HF (1)

ioChem-BD Browse

Search Browse Search Browse Logged in as sharonlester@loch... Create

Foo Bar organization / Vladimir Fock research group / dmabn

Geometry:

Actions:

- View data
- Download geometry

Files in This Item:

File	Size	Format	Action
control	1.86 kB	Unknown	Download
output.cml	41.63 kB	Chemical Markup Language	Download

Referenced by:

Manuscript title: A Metal-Free Synthesis of N-Aryl Carbamates under Ambient Conditions
Journal: Angew. Chem. Int. Ed.
DOI: 10.1002/anie.201504956

Code snippets:

`</>` `AU` HTML

Metadata:

Title: /tdhf dmabn
 Authors: Lester, Sharon
 Issue Date: 3-Feb-2020
 Publisher: Foo Bar organization

JSmol

Conclusions

- ioChem-BD demonstrates an early large-scale infrastructure for managing computational chemistry data
- XML/CML enabled structured, validated, and transformable chemical data representations
- Highlights the importance of standardized, automated, and reusable computational data workflows

However,

- XML/CML is very verbose and complex, so few researchers adopted it
- Parsing and transforming XML data requires significant technical effort
- Difficult to integrate with modern data science and machine learning workflows
- ioChem-BD is not fully open-source, and some versions require paid licenses, which may limit adoption and transparency

Thank You