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Section 1. Background for Research

Importance

synthesis reaction design for drug discovery and chemical process
relies on expert chemists, requires time and cost

!

machine learning accelerate the development
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Research Progress

OpenAl released the large language
model (LLM) based ChatGPT

¢
2022

Other LLM € Claude, Gemini, Llama3.1, Mistral, et al.

Applications
¢ .
literature mining, molecule and material

discovery, reaction condition recommendation,
optimization and lab apparatus automation.

See page 2
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Deficiencies and Challenges

Fragmented coverage of the synthesis development stages

Fail to achieve fully autonomous end-to-end design

Task Lit. Search  Screening Kinetics  Optimization Scale-up Purification Product

LLMs Involved

D Refs 26, 27
aEEss——— caEEss——— Refs 40-41
e cEEE—— Refs 28, 29

s This Work

See page 2
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This Work

b LLM Agents
Web Interfaces s — )
Describe task in fn-\ : ”! : k.
natural language ’ l \ ' ‘
Suggestion / Action Literature Experiment Hardware
O Human decision Scouter Designer Executor
after inspection 'Q P
Chemist User Results bv ' D¢
Iteration...... Spectrum Separation Result
\Analyzer Instructor Interpreter 9
LLM-RDF -]
Q) Hor
[ :’. ) QO'-’"
@ | i
Literature : e
0 Sasioh Screening | Kinetics
08 oy — —
& tpore
Optimization Scale-up Purification

Cu/TEMPO catalyzed aerobic alcohol oxidation

LLM-based reaction
development framework

GPT-4 based

Pre-training

No coding

External tools available

Human-machine cooperation

See page 3
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Literature Search and Information Extraction!

Literature Search

User: Search for methods that can use air oxidation of primary
alcohols into aldehydes and provide references.

\\_‘ SEMANTIC SCHOLAR

A free, Al-powered research tool for scientific literature

Answer: Here are some notable methods (literatures):
1. Sustainable catalytic oxidation of alcohols over the interface
between air and water®.

Fearch 225,545,152 papers from all fields of science m

Try:

literature-oriented

2. Highly practical copper(lyTEMPO catalyst system for
chemoselective aerobic oxidation of primary alcohols*".

3. Pd(ll)-hydrotalcite-catalyzed oxidation of alcohols to https //WWW se mantiCSChOIar.Org
aldehydes and ketones using atmospheric pressure of air®.

4. Photochemical oxidation of benzylic primary and secondary

alcohols utilizing air as the oxidant®'.

Results Analysis

User: Which method has the best potential for practical
applications?

Answer: Among the methods discussed, method 2 stands out for
ease of catalyst preparation, use of ambient air as oxidant,
compatibility with various alcohols, operational simplicity, and Togls © || Bemete ellspilt mediterrancan
chemoselectivity.

Search in: All Databases ~ Collections: All ~

DOCUMENTS  CITED REFERENCES

Topic

Infermation Extraction Topic A,
User: Extract the procedure and design space from the uploaded Author Bomples:
literature document. Publicaion/Source Tites UL d
Year Published h page dashboard.
Answer: Procedure: To a solution of alcohol in GHSEN in a tube [ —

was added (1) CuOTf, (2) bpy, (3) TEMPO, and (4) NMI.
Design Space: Cu Salts: Cu(OTf), CuBr, Cu(OTf),, CuBr,, Bases:
NMI, DBU, Time:1, 6, 24 hours.

See page 3
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Substrate Scope and Condition Screening

——  First-principle theories hard to predict yield

— Machine learning based methods need amount of experimental data

—— High-throughput screening need programming, manual analysis and expensive

It uses microplates as the carrier for experimental tools, an
automated operating system to execute the experimental
process, a sensitive and rapid detection instrument to collect
experimental result data, and a computer to analyze and
process the experimental data. See page 4, 5
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Substrate Scope and Condition Screening

[ HTS Design ] e —— [ Automated HTS J —— [GG-FIL‘I-MSAnaIysIBJ [RaauItAnalanaJ
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Substrate Scope and Condition Screening
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Reaction Condition Optimization!

Bayesian Optimization
- An efficient global optimization algorithm
- Suitable for the "black-box function”

fit experimental data L . .
Surrogate Model pregict he results > Acquisition Function sele(;:_tt.motst \l;vortthyt r > Iteration
. : condition to be teste
eg. Gaussian process eg. expected improvement
Feedback data

| |

I/‘e\\ l I
/
A 4 New oxp. . Reaction samples o
\ ¢ ‘7 Stopping signal ’ L
T if necessary
Bayesian Auto Synthesis
Optimizer Equipment RELG

See page 8, 9
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Reaction Condition Optimization

Use probability of improvement and LLM
1.0 - : :
. COoaD ﬂ:r.lcﬂrim Qoo to terminate the BO algorithm.
A oo \\ J’.l' 10 =
0.8 - D © :
\. B C 10 ‘
e @ °
0.6 4@ 0 ]
A=, 2
D O CuCl, " {PiThreshold
-~ W CuBr, .
il Cu(OTf),
" Cu(BF,), 3
0.2 + A NMI 16 11 16 21 26 31 36
Experiment Number
O DBU
0.0 4 ada o _D: 26" Experiment
r T r T 1 : The recommendation is to terminate optimization
1 8 11 16 21 J28] 31 36 because high yields have been achieved, and a wide
c Experiment Number range of conditional spaces have been explored.

See page 8, 9
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Reaction Scale-up and Product Purification

Scale-up reaction

Choose Condition
User: Select the best condition, considering cost, efficiency for large-scale

. Exp 26

- Base equiv. P
production. q Exp 32
Answer: To select the optimal experimental condition, numerical scoring was ; — EXp 35

applied to reaction time, base equivalence, and catalyst cost (CuCl, < CuBr, <
Cu(OTf), < Cu(BF,),), with lower values preferred. Each parameter was
normalized to a 0-1 scale. The 35" experiment was chosen from among those
with high yields, as it had the highest average score across the evaluated
parameters. The right radar chart highlighted that the experiment 35 had the
largest area, reflecting superior performance across the evaluated criteria.

Scale-up Design*
User: Design a scale-up strategy for the gas-liquid biphasic aerobic alcohol
oxidation reaction, currently at 7.5 mg in 1.25 mL reaction mixture.

Answer: The core of scaling up this reaction is ensuring efficient gas-liquid
contact for effective oxygen transfer. Propose a two-stage scale-up:

e 1 g scale to validate reproducibility: Reactor: 250 mL round-bottom flask;
Mass transfer: Mechanical stirring; Oxygen source: Ambient air.

¢100 g scale to assess industrial production feasibility: Reactor: > 20 L glass or

81 72 63 54

Cu catalyst
Time (min)

stainless steel reactor; Mass transfer: bubbling device or gas distributor; Yield (%)
Oxygen source: Air or oxygen introduced through gas distributor or bubbling
device.

See page 8-10
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Reaction Scale-up and Product Purification

Purification
Eluent Optimization* 1.51..*.%'5.%
User: With 1:1 hexane : ethyl acetate, the product's Rf is 0.63, and *0.
an impurity's Rf is 0.83. Adjust eluent composition to make product
Rf value range of 0.2 to 0.3 in TLC.
Answer: To lower Rf values and improve separation, increase the | e
proportion of the less polar solvent hexane. Adjust to hexane:ethyl 5 Ea
acetate=21. T
User: With 2:1 hexane : ethyl acetate, the product's Rf is 0.36, and an 059
impurity's Rf is 0.59.
Answer: To further optimize, consider increasing the proportion of [~ ponees
hexane by adjusting the ratio to hexane : ethyl acetate = 3:1. 31 HEA
User: With 3:1 hexane : ethyl acetate, the product's Rfis 0.28, andan |
impurity's Rf is 0.49. D49
Answer: This ratio is effective, bringing the product's Rf into the ideal
range for column chromatographic separaton. =~ e besrass

See page 8-10
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Conclusion

LLM-RDF demonstrates a transformative approach to chemical synthesis that integrates chemist
users, LLM-based agents, and automated experimental platforms, significantly streamlining the
traditional expertdriven and labor-intensive workflow of reaction development.

Limitations

+ LLM-based agents may provide incorrect responses « Introducing another LLM to double-check

+ Lack of domain knowledge < Retrieval-augmented generation

- Mathematical operations (recognized limitations) «— Equip with integrated tools

 Reproducibility and transparency «— More training

- Communication among LLM-based agents < People can only do critical decisions
See page 12
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Methods
- GPT-4
LLM-based agents | Qwen2-72B
__ Llama3.1-70B

—

Frontend: Vue.js, Node.js
Web application —  Backend: Python FastAPI
GPT-4 APIs hosted on Azure

See page 13
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Methods
JSON 1. [
: {
A lightweight data-interchange format
Easy for humans to read and write
Convenient for machines to parse and generate }
Adopts an independent text format {
Array (in square brackets) ' }
11. R
12. {
Each object is enclosed in curly braces 1?' :
Including key - value pairs 15.
16. }s

"reagent": "alcohol",
"parameter”: 0.25,

"unit": "ml"

"reagent”: "Cu catalyst",
"parameter”: 0.25,

"unit": "ml"

"reagent”: "bpy",
"parameter”: 0.25,

“I.,Inj_t" : "ITI]_“

See Sl page 23
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26

Bayesian Algorithm

Methods

(i}, =aremaxal({x}, )

=argmaxE, (ReLu (maxI-:L Laf (%) — F(x” ))) ®

where {xﬁ?w}zzl is the g newly proposed reaction conditions, x* is the
current optimal condition, and [E, indicates that the expectation is
taken under the posterior distribution at time n.

Pl Algorithm

o(X)

where p(-) is GP’s mean, o(-) is GP’s standard deviation, ®() is the
normal cumulative distribution function, and £ is the trade-off
parameter of exploitation and exploration.

See page 13
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