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Research Background

« Raman spectroscopy has shown to be a versatile analytical technique
to obtain physical and chemical information.

- However, raw measured Raman spectra are often disturbed by
baseline drifts caused by Rayleigh scattering or fluorescence.

 Accurate corrected baselines are essential for Raman spectra.




Previous Baseline-Correction Methods



+» Wavelet transform

Baseline -> low frequency; Noise
-> high frequency.

Filters out baseline using a
wavelet transform

Performance greatly depends on
the filtering ability of the wavelet
transform

Previous Baseline Correction Methods

+ Polynomial fitting

Fits the baseline by continuously
and iteratively eliminating the
spectral signal peaks

Prone to overfitting/ underfitting.

Relies on artificial interventions

s Penalized least squares

« lteratively changes weights by
estimating a base-line.

« Efficient, avoid user interventions

« Lack of flexibility



‘*Penalized least squares (PLS)
Loss function

» Difference matrix

Fitness

S(2)= @-2"(y—2+ ADz"Dz
L 1

'

Fitted spectral signal to be identified

A spectral signal of length N
sampled at equal intervals

- Balance between fithess and smoothness

S(z)= (y—2)"W(y—2) + 2z"D"Dz
|
l Peak regions: w; = 0
Weight vector to apply penalty.
Is a matrix with elements w;

Non-peak regions: w; = 1



+*PLS methods

< Asymmetric least squares (AsLS) |
* Avoid predefining wave regions.

 Boosted-baseline problem

s Adaptive iteratively reweighted —
penalized least squares ( AirPLS)

« Extra control of smoothness

< Asymmetrically reweighted - introduced asymmetrical weights to prevent boosted baseline
penalized least squares (arPLS)

PLS methods are prone to misjudgment in peak regions!




Key Challenges in Deep Learning Methods



‘*Deep learning methods

* Requires numerous labelled datasets

» Costly data collecting and labelling process - simulated spectral data

¥

Convolutional Neural Networks
(CNN) based models
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¢+ Convolutional neural networks (CNN) based models

» Vanishing-gradient problem
1. In extremely deep CNN, the gradient values get smaller and

smaller when passed back through previous layer.

2. When the gradient is almost zero, the weights will no longer

be updated, i.e. CNN stops learning.

$

ResNet

Has a better regression and recognition
ability compared to the conventional CNN

[1]1B.-H. Kung, C.-C. Huang, P.-Y. Hu, S.-y. Lo, C.-C. Lee, C.-Y. Yao and C.-H. Kuan, 2020 Conference on Lasers and Electro-Optics (CLEO), 2020, pp. 1-2.

[2] Y. Liu, Chemometrics and Intelligent Laboratory Systems, 2021, 213, 104317.
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¢ Residual Networks (ResNet)

> Shortcut connection of the residual learnina framework

} ;
Convld, N Convld, N
FR . Projection shortcut
Identity shortcut . ! :
Convld, N Convld, N/2 Convld, N/2 . . .
: Input is projected into the
When the input and output : I E same dimension as the
have the same dimensions. Convid, N Conyla, N2 : output before adding.
% 6}% :
(a) (b)
Fig. 1 Structure of the ResNet block. (a) Identity shortcut. (b) Projection

shortcut.

[3] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.



¢ Residual Networks (ResNet)

» Baseline Recognition Networks

, : U The « Collect a set of spectra and cut the peaks manually to form a
| s> 2 -l peak library.

* Randomly select a series of peaks from the library and

A ﬂ randomly place them in an interval.
SN\

o~
\ o IJ\// * Select a raw spectrum and set a threshold to erode its peaks.
SR
—— * Smooth the reserved part by slide averaging to get a
Teragie™| waveform to simulate the baseline.
_— : « It is also used as the target for training.

* Generate random noises sampled from uniform and normal
distributions.

_AW A« Add all of the three parts (generated in Step 2, Step 4 and
Step 5 respectively) to get a synthesized trace.

Data set generated from experimental data

[2] Y. Liu, Chemometrics and Intelligent Laboratory Systems, 2021, 213, 104317.

input_1 input: | dimension 100
(InputLayer) output: | dimension 100
fullyConnected_1 input: | dimension 100
(Linear Transformation Layer) | output: | dimension 1000
=
m
=
activation_1 input: | dimension 1000 2
(RelLU) output: | dimension 1000 3
1
2
m
fullyConnected_2 input: | dimension 1000
(Linear Transformation Layer) | output: | dimension 100
<
activation_2 input: | dimension 100
(RelU) output: [ dimension 100

Residual block
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¢ Residual Networks (ResNet)

» Deep residual convolutional neural network (DRCNN)

Chalcomenite
1.0 4 813

256x256

—— Raw sample
ol L : = iy o) —— Processed
ik A Ig
Stride=1 Stride=2 (250,64) (125,128) | i~~~y 3 084
Kernel=11 Kernel=3 ! ........l
(1000,16) (500,32) [ N e —
: IS CSEIOCKINH = 0.6
4 g i B RelU B [ A 5
Loss=MSE, Optimizer=Adam, Epoch=100, Lr=0.00001 : __ oc _-} g
- ’ S 0.4
Stride=1 Stride=2 \ s x18
Kernel=3 Kernel=3 B o
(1000,1) (1000,16) (500,32) (250,64) s O C 02 1
deConv deConv deConv l v
Rell : ReLU Re U 0.0 4

200 400 600 800 1000 1200
cm-1

Extract the key information of the spectral peaks from diverse baselines and noises without a priori
information of noise levels and baselines.

[1]1B.-H. Kung, C.-C. Huang, P.-Y. Hu, S.-y. Lo, C.-C. Lee, C.-Y. Yao and C.-H. Kuan, 2020 Conference on Lasers and Electro-Optics (CLEQ), 2020, pp. 1-2. 14



Proposed Deep Learning Method



* A success deep learning model requires ...
» The amount and variety of the data set.

» Structure of the deep learning network

» Hyperparameter tuning

$

A method to generate spectral data set
 ResUNet: A new deep learning network
combining ResNet and UNet (U-shaped

Network)

o

Relative intensity(a.u.)

Fig. 3 Simulated data examples with different baseline and additional

noise.
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* Data generation

X

Position — S Anchor Point x

(Generation)

X
X
Width
Height Baseline
+ .|. ' (Interpolation)
l Simulated Spectrum

Peak == @
Noise  stpiwihmmtinribissmry w5 mp
Fig. 2 Procedure for generating simulation data.
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% UNet (U-shaped Network)

64 64
Trye » Firstly applied in medical images
i ol s cumit « Comprises contracting and expansive
e il d 48 ma
“EEE paths.
HE t%' « U-shaped architecture: the size of the
128 128
256 128
{ data changes from small to large when
slslz 515 3 passing through the contracting and
¥ 256 256 512 256 I
IR Bl e com 33, KoL expansive paths.
~ ol i ﬁi e ﬁ_-g = 'copy andlc;rozp
SNl :‘F’:E-N » max pool 2x
e ¥ o ¢ 5 B # up-conv 2x2
%-TD_'E_ = conv 1x1

(2]

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

[4] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical image computing and computer-assisted 18
intervention—-MICCAI 2015: 18th intemational conference, Munich, Germany, October 5-9, 2015, proceedings, part Ill 18. Springer international publishing, 2015.



% UNet (U-shaped Network)

64 64

input
image
tile

4
¥

572 x 572
570 x 570
568 x 568

392 x 392

390 x 390 '

'128 128
256 128
m.ﬂ’]
BB
SISNS Szl
NN N
' 256 256 512 256 '
A b bt 3 q K
& K 423
¥ 52 s 1024 512
AL 3 -l
I 43 B
’ 1024 o o

128 64 64 2

output
segmentation
map

A/

388 x 388
3ssx3ss ¥

» The symmetric structure ensures precise
localization while maintaining context.
» Upsample the feature map on the expansive

path and combine the context of the feature

=»conv 3x3, ReLU

copy and crop map captured on the contracting path for

¥ max pool 2x2
4 up-conv 2x2

o con 1l more accurate localization.

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue > Retrleve the IOSt p'Xel |nf0rmat|on
box corresponds to a multi-channel feature map. The number of channels is denoted

on top of the box. The x-y-size is provided at the lower left edge of the box. White

boxes represent copied feature maps. The arrows denote the different operations.

[4] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical image computing and computer-assisted
intervention—-MICCAI 2015: 18th intemational conference, Munich, Germany, October 5-9, 2015, proceedings, part Ill 18. Springer international publishing, 2015.
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** ResUNet
« Uses ResNet for the expansion and contracting paths while

maintaining the main structure of UNet

(32x2)x512 32x512

512
Y

32512 [

(48x2)x256 48x256

| Ié-IIT - [HTIIf

243x16
= = Down-sampling = === Up-sampling ~———» Copy Flatten
Fig. 4 Structure of the proposed ResUNet.
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Results
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“* Preliminary experiments

(1) To select the best smoothness parameter A of arPLS and asPLS.

Table 2 RMSE (x10™%) of baseline-corrected spectra for different

values of parameter A S(z) = (y—2"W(y—2) + 2z2"D"Dz
Fitness
log 104
0 1 2 3 4 5 :

RMSE = [i (yi — z))* /N] 2

arPLS 243.74 82.25 128.13 577.62 1349.30 1923.00
asPLS 825.87 615.52 242.62 93.21 63.90 337.05
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“* Preliminary experiments

(2)To determine the channel size of the deep-learning-based methods. Ciii=pCi1 < p < 2.
Channel size

Table 3 Results of the preliminary experiments for constructing a deep-learning network

Model Channel Parameter RMSE (x107%)
ResNet 16 32 64 128 256 512 6427 360 6.66
16 32 64 128 256 3180 640 7.15
32 64 128 256 512 8521 408 7.10
32 48 72 108 162 243 2394 762 6.66
UNet 32 48 72 108 162 243 2070 882 6.20
ResUNet 32 48 72 108 162 243 2350457 5.85

« Set appropriate channel size > downsampling or upsampling by a multiple of 2

» Appropriate channel - less number of parameters.
» =15

23



¢ Training strategy

Value/Setting

Training Loss Function
Validation Loss Function
Optimization Method
Batch Size

Maximum Learning Epoch
Initial Learning Rate

Learning Rate Decreasing
Setting

Model Saving Condition

Root Mean Square Error (RMSE)
Mean Absolute Error (MAE)
Adaptive Moment Estimation (Adam)
500

1200

5 x 104

- Reduced to 4/5 of starting rate if validation loss
doesn't improve for 75 epochs

- Training stops if learning rate reaches 1/8 of
original rate

Current model is saved if validation loss is lower
than previous

24



* Simulated data: quantitative

x10~4
60
» 210000 spectra generated. 50
70000 used for training. |
30
o BB .
» ResUNet shows the lowest RMSE and MAE.
5|
A | B | | .
arPLS asPLS ResNet UNet

ResUNet

Fig. 5 RMSE and MAE of baseline-corrected spectra obtained by

various methods.
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* Simulated data: qualitative

—— ResUNet —— ResUNet
n ......... ResNet | | .\ AN\~ K e ResNet
—.— UNet —=- UNet
asPLS asPLS
----- true baseline ----- true baseline
= 3
© o,
> 2
E £
S s
B ®
& &
v
J\ ’\ /
‘,Uf‘r ~~~~ | y v
0 100 200 300 400 500 0 100 200 300 400 500
Fig. 6 Baseline-fitting results of the first simulation spectrum. Fig. 7 Baseline-fitting results of the second simulation spectrum.

» ResUNet has outperformed the penalized least-squares-based baseline-correction methods and the

other two deep learning methods 2
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“ Experimental Raman Spectrum

Relative intensity(a.u.)
Relative intensity(a.u.)

» ResUNet has successfully

corrected the baselines of

0 100 200 300 400 500 0 100 200 300 400 500

Fig. 8 Measured 35DNT Raman spectra. Fig. 10 Measured 4ADNT Raman spectra. the tWO Su bSta nces
Linear background Highly curved background

Relative intensity(a.u.)
Relative intensity(a.u.)

0 100 200 300 400 500 0 100 200 300 400 500 27

Fig. 9 Baseline-corrected 35DNT Raman spectra. Fig. 11 Baseline-corrected 4ADNT Raman spectra.
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¢ Conclusion
» A ResNet-based baseline-correction method for spectra was proposed.

» Compared to existing penalized least squares methods, ResUNet does not require subjective
parameter estimation and shows better performance.

» Two problems were addressed:

 Insufficient training data - Simulate spectra by combining randomly generated baseline,
peak, and additive.

« Channel size - for one-dimensional data, an appropriate channel size can reduce the
number of model parameters.

» Compared to existing deep-learning-based methods, ResUNet has achieved excellent
accuracy without increasing the number of parameters.

» ResUNet gives the smallest standard deviation of the results amongst all the methods that
were considered for comparison.
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Questions? Comments?
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