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Scientific discovery

 

Building on existing knowledge to analyze experimental data, 
recognize data patterns and formulate well-reasoned hypotheses

 Prior knowledge understanding
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Reasoning abilities

 LLM (Large Language Models)

 

Research Background



• Molecular property prediction

 

• LLMs possess extensive prior knowledge of molecular property prediction 
tasks.

E.g. predict molecular weight and number of aromatic rings as key factors in solubility
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• LLMs can understand formal scientific languages, such as the Simplified 
Molecular Input Line Entry System (SMILES).
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• Molecular property prediction
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➢ Can LLMs leverage their prior knowledge and reasoning abilities to 
facilitate scientific discovery? 

➢ Can LLMs be effectively used to help predicting the properties of 
molecules? 

• LLM4SD (LLMs for Scientific Discovery), functioning by ：

1. synthesizing knowledge from existing literature。 

2. inferring knowledge by observing experimental data.

Research Background



Research Background
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• LLM4SD (LLMs for Scientific Discovery)

 
• Retrieves known rules to predict molecular properties based on its pretrained 

literature

• molecules with molecular weight under 500 Da being more likely to pass the. 

blood–brain barrier (BBB). 

• Identifies patterns from experimental data using its understanding of SMILES 
notation and chemistry knowledge

• molecules containing halogens are more likely to pass the BBB. These rules 

are then used to create interpretable feature vectors for each molecule. 

• Achieves the current state of the art on molecular property prediction across 58 

benchmark tasks from the MoleculeNet, spanning four domains: physiology, 
biophysics, physical chemistry and quantum mechanics.
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➢ LLM4SD pipeline

a. Knowledge synthesis 
from the scientific 
literature

b. Knowledge inference 
from data

c. Model training

d. Interpretable insights.
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❖ 4 domains: physiology, biophysics, quantum mechanics, physical chemistry

▪ Overall performance

▪ Study of key components
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➢ Experimental Results



❖ Overall performance: 

LLM4SD demonstrated superior efficacy and performance compared with nine other 
specialized, state-of-the-art supervised GNNs: AttrMask, GraphCL, MolCLR, 3DInfomax, 
GraphMVP, MoleBERT, Grover and UniMol2

12*AUC-ROC: Area under the Receiver Operating Characteristic Curve. It measures a model’s ability to distinguish between classes, regardless of 
threshold. It’s standard for classification problems

➢ Experimental Results: overall performance
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➢ Experimental Results: overall performance

❖ Compared to GNNs, LLM4SD: 

1. Leverages prior knowledge accumulated from previous scientific literature.

2. Provides interpretability for generating clear scientific hypotheses.
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LLM4SD GNNs

Knowledge 

Integration

Inherently embeds scientific 

knowledge, avoiding additional

intervention beyond natural 

language interaction

Requires explicit careful curation 

and integration of domain-specific 

features or hard-coded knowledges

Interpretability More interpretable through natural 

language reasoning and 

explanation capabilities

Encoding molecules into 

embeddings leads to a lack of 

interpretability.



➢ Experimental Results: study of key components

❖ The influence of scale and pretraining datasets on its performance are studied.

❖ Contributions of knowledge synthesis and inference are accessed.

❖ Foundational LLM backbones are evaluated: 

• General LLMs: GPT-4, Falcon-7b, Falcon-40b

• Domain-specific LLMs: Galactica-6.7b, Galactica-30b, ChemLLM-7b, and ChemDFM-13b
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➢ Experimental Results: study of key components

❖ Effect of scale and pretraining datasets
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1. Conspicuous performance disparities 

within the Falcon series. 

Falcon-7b (smaller model), fell short 

compared to Falcon-40b (bigger model) 
and failed to conduct tasks in physiology 

and quantum mechanics



➢ Experimental Results: study of key components
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2. In the Galactica series, a larger model 

did not necessarily translate to superior 

performance.
Galactica-6.7b (smaller model) 
outperformed Galactica-30b (bigger 

model with four times of the parameters) 
except for that in quantum mechanics.

❖ Effect of scale and pretraining datasets



➢ Experimental Results: study of key components
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3. The Chem- LLM series underperformed 

the Galactica series

• ChemLLM-7b and ChemDFM-13b: 

adapted from general LLMS

• Galactica series: built from scratch with 

a larger dataset.

❖ Effect of scale and pretraining datasets



➢ Experimental Results: study of key components

❖ Contributions of knowledge synthesis and interference
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The combination of synthesis and inference features consistently 

outperformed individual methods.

From literature From experimental data



➢ Experimental Results: validation of established rules

The rules generated by Galactica-6.7b were validated by: 

1. statistical tests to confirm their association with the target molecular 
attribute:

• Classification tasks: the Mann–Whitney U-test
 Evaluates the statistical relevance of the rule’s ability to distinguish classes

• Regression tasks: the linear correlation t-test 
 Reflects whether the rule contributes to regression prediction

2. a literature review to validate its existence in previous research.
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➢ Experimental Results: validation of established rules
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1. Most of the synthesized rules are 

readily available in existing 

scholarly works.

2. Without analysing the data, LLMs 

tend to aggregate and summarize 

existing knowledge.



➢ Experimental Results: validation of established rules
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3. An average of 91.3% of the inferred 

rules were statistically significant, 

higher than synthesized, among 

which an average of 74% rules 

were already documented in 

existing scientific literature.

4. six out of eight tasks have 

statistically significant rules that 

could not be identified in the 

existing literature, reflecting a 

genuine capability of LLM4SD to 

derive meaningful rules from data.



➢ Experimental Results: validation of established rules
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5. LLM4SD was able to infer second-

order-rules.

The carbonyl functional group and 

fragment rings are predicted as key 

determinants of a molecule’s BBBP, 

which is not identified in literatures. 

However, they can influence a 
molecule’s cross-sectional area, 

furtherly affects its orientation in lipid–

water interfaces—factors vital for 

membrane partitioning and permeation.



Discussion

24



➢ Discussion
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1. Despite focused on molecular property prediction in this study, LLM4SD can be 

extended to complex tasks like protein and gene sequence analysis.

• Biological sequences are much longer and more complex than SMILES, posing 

challenges for LLMs due to limited context handling and domain-specific 

knowledge requirements.

2. Improvements could include:

• Pretraining on large biological datasets

• Using retrieval-augmented generation with databases like UniProt and GenBank

• Developing better tokenization for biological sequences
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➢ Conclusion
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1. LLM4SD is proposed as a framework designed to harness LLMs for driving 

scientific discovery in molecular property prediction by synthesizing knowledge 

from literature and inferring knowledge from scientific data.

2. LLM4SD has outperformed GNNs in molecular property prediction in physiology, 

biophysics, quantum mechanics, physical chemistry.

3. Despite their smaller scales, domain-specific LLMs such as the Galactica models 

outperformed the general LLMs like Falcon series, underscoring the pivotal role of 

proper domain-specific pretraining. 

4. LLM4SD not only validates well-established scientific principles but also uncovers 

potentially new rules, enhancing both the quality and trustworthiness of the 

research output.
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Thank You
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