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Challenge 1

data frequently exists in unstructured natural language text formats,

We synthesized a haloalkane from an alkene at 50 °C.

!

hard to be utilized by modern informatics that rely on structured datasets

Temp =50 °C
Starting materials = alkene
Product = haloalkane
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Solution 1

Natural language processing (NLP)

Make computers understand human language Corpus

€@ Turn texts to units (tokens)

Named Entity Recognition (NER)
|dentify relationships

Behaviour Map

@ Extracting information

Programming

Programming means a
selective systematic

v
change. Structured format
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Research Progress for NLP

Transformer-based BERT architecture
Challenge 2

capture relationships _ _ _ _
® Discern entity relationships

NER model > ® Non-standard names
based on PubMedBERT _
® Complex expressions
recurrent neural networks

Deep learning MaterialsBERT
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Solution 2

Large language models (LLMs)

eg. Generative Pretrained Transformer (GPT) and Large Language Model Meta Al (LlaMa)

Advantages: Disadvantages:

1. Pre-training to acquire better comprehension 1. Depend on significant computational resources

Extract high-quality information

2. Supervised fine-tuning to produce desired outputs

Reduce unnecessary model prompting
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This Work

LLM- and NER-based pipelines for property data of polymers

Q / Full Texts Corpus b/ S \

tring search
Bandgap: / \
'bandgap', 'Eg’', 'optical bandgap', 'energy gap’, ... lgstlf;lc)taisoer?
Glass transition temperature:
iy 'glass transition', 'Tg', 'glass transition temperature’, ... m
documents \ : J ,( I | l E

x Polymer Scholar

MaterialsBERT

Filter by 'poly' h [Extract Paragraphs \ Heuristic Filter NER Filter !

Title or Abstract by property
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Data extraction using large language models

a

manually pick keywords

in-context few-shot learning

GPT-3.5 response

database

Example/shot

USER: By fitting the measured T_{g} values by a modified
Gordon-Taylor equation as a function of composition, T_{g} values
of the poly (amic acid)s in solvent free were estimated: 248.4 °C for
BPDA-PDA, 283.4 °C for PMDA-PDA, and 184.4 °C for BPDA-
ODA precursor.

Extract all t, or glass transition temperature values in JSONL
format with 'material’, 'property’, 'value', 'condition' columns.
ASSISTANT:  [{"material": "BPDA-PDA", "property": "Tg",
"value": "248.4 °C", '"conditions": "modified Gordon-Taylor
equation fit"}, {"material": "PMDA-PDA", "property": "Tg",
"value": "283.4 °C", 'conditions": "modified Gordon-Taylor
equation fit"}, {"material": "BPDA-ODA", "property": "Tg",
"value": "184.4 °C", ‘'conditions": "modified Gordon-Taylor
equation fit"}]

Prompt

USER: The thermal analysis of PGN and the copolymer was
investigated, and their glass transition temperatures (T {g}) were
determined (Figure 5). As can be seen, when the DSC was run at a
rate of 10 °C min~{-1} T {g} of PGN and the copolymer was -35
°C and -58 °C, respectively. Also, polypropylene glycol has a low
glass transition temperature (-70 °C).

Extract all tg or glass transition temperature values in JSONL

format with 'material’, 'property’, 'value', 'condition' columns.

[ —

SHOT

LLM Response

ASSISTANT: [{"material": "PGN", "property": "Tg", "value":
"-35 °C", "conditions": "DSC run at a rate of 10 °C min~{-1}"},
{"material": "copolymer", "property": "Tg", "value": "-58 °C",
"conditions": "DSC run at a rate of 10 °C min"{-1}"},
{"material": "polypropylene glycol", "property": "Tg", "value":
"-70 °C", "conditions": "None"}]

Material Property Value
PGN Tg -35 °C
—
copolymer Tg -58 °C Database
polypropylene glycol Tg 70°°C
A
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Performance benchmarking for a labeled subset of the full corpus
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Data extraction from full texts

LLM-based
extraction

NER-based
extraction

MaterialsBERT

Total extracted paragraphs:
102,427

complementary

d 1399
(12.32%)

MaterialsBERT

11,042
0,
(9.76%) GPT-3.5

Total extracted materials:
113,099

13



Section 2. Results and Discussion ﬁ &)

Correlations between extracted properties

® GPT-3.5 ® MaterialsBERT
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Outlook

A framework for automated extraction of polymer property data from full-text articles using large
language models GPT-3.5 and NER-based model MaterialsBERT. From a corpus of 2.4 million articles,

the method identified 681k polymer-related papers and extracted over 1 million records covering 24

properties of 106k unique polymers.

* Identify and extract polymer in figures via vision models + LLMs
* Difficulty in establishing cross-paragraph entity relationships

* Data in tables and supplementary materials remains difficult to extract

" The extraction of procedural tasks (such as synthesis routes)
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