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Research Background
❖ Machine learning has transformed many fields and has recently 

found applications in chemistry and materials science.

Small Datasets in Chemistry Machine Learning Techniques

❖ Perform these tasks with GPT-3 (a LLM)
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Research Background

❖ But How?
We fine-tune it to answer chemical 
questions in natural language with the 
correct answer.

❖ Surprisingly, our fine-tuned version of GPT-3 performs comparably to 
or even outperforms conventional machine learning techniques, in 
particular low-data limit.
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Research Background

❖ Fig. | Overview illustration of the datasets and tasks addressed in this work.
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Methodology
❖ Let us first discuss how we 

fine-tune the GPT-3 model for 
example, in the case of 
high-entropy alloys.

❖ The question we would like to ask 
is: ‘What is the phase of 
<composition of the high-entropy 
alloy>?’ and our model should give 
a text completion from the set of 
possible answers {single phase, 
multi-phase}.

                  prompt completion experimental

What is the phase of ColCulFe1Ni1V1? 0 multi-phase

What is the phase of Pu0.75Zr0.25? 1 single-phase

What is the phase of BeFe? 0 multi-phase

What is the phase of LiTa? 0 multi-phase

What is the phase of NbO.5Ta0.5? 1 single-phase

What is the phase of AI0.1W0.9? 1 single-phase

What is the phase of CrO.5Fe0.5? 1 single-phase

What is the phase of Al1Co1Cr1Cu1Fe1Ni1Ti1? 0 multi-phase

What is the phase of Cu0.5Mn0.5? 1 single-phase

What is the phase of OsU? 0 multi-phase

In the Data Table, we can see the set of 
questions and answers we used to 
fine-tune the GPT-3 model.
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Methodology
❖ We selected this example to directly compare its performance with the current 

state-the-art machine learning models.

           Fig. Accuracy of our GPT-3 model

The dashed horizontal line indicates the performance of 
the commonly used machine learning model using 
random forest (RF) with a dataset of 1,252 points and 
10-fold cross-validation, that is, corresponding to a 
training set size of around 1,126 points.

We show that with only around 50 
data points, we get a similar 

performance to the commonly 
used machine learning models, 

which were trained on more than 
1,000 data points.

9



Outline

 Applications

10



Applications
❖ We focused on those applications for which conventional machine learning methods have been 

developed and generally accepted as benchmarks in their field.

➔ Classification : The following Data Table compares the performance of a fine-tuned GPT-3 
model with baselines : 

For the analysis in this table, we fit the 
learning curves for the GPT-3 models and 
for the baselines and measure where the 

learning curves intersect.

We determine the factor of how much 
more (or less) data we would need to make 

the best baseline perform equal to the 
GPT-3 models in the low-data regime of 

the learning curves.
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Applications
❖ We studied molecular properties like HOMO–LUMO gaps, water solubility, and 

photovoltaic performance; material properties of alloys, MOFs, and polymers; and 
two key cross-coupling reactions in organic chemistry.

A learning curve, for 
example in the case of 
free energy of solvation 

is shown.       Fig. Learning 
curves for binary 
classification on the 
FreeSolv dataset

A balanced split into 
two classes was 

performed. Error bands 
show the standard 
error of the mean.

❖ In the low-data regime, our GPT-3 model is 
typically at least as good as the conventional 
machine learning model and often needs fewer 
data. 

❖ In the high-data regime, the conventional machine 
learning models often catch up with the GPT-3 
model. 

❖ This makes sense, as for a given size of the 
dataset, the need for additional data and 
correlations captured by GPT-3 might be less 
needed. 12



Applications
❖ Would allow us to predict the value of a continuous property such as the 

Henry coefficient for the adsorption of a gas in a porous material.

More Challenging
   We need more data for tuning the 

GPT-3 model

➔ Regression : 

❖ As we are using a pre-trained language model, performing actual regression that predicts real 
numbers (∈ R) is impossible (without changes to the model architecture and training procedure).

Regression
Task

❖ We still get a performance that can approach the state of the art, but as this approach requires much 
more data, the advantage, except for the ease of training, is less. 13



Applications
❖ One Way to Approximate Regression: directly predicting rounded floating point numbers.

❖ One would expect the performance to be worse than in the classification setting. GPT-3 
performs worse than baselines in this setting.

❖ However, it sometimes approaches the performance of the baselines.

Errors due to rounding

Figure: 
Mean absolute 

percentage error 
due to rounding 

to different 
numbers of 

digits on two 
datasets.
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Applications
❖ Generating molecules with 

the desired set of properties.

❖ With limited dataset, GPT-3 can still predict properties 
effectively, making it ideal for early-stage research. We could 
leverage a fine-tuned GPT-3 model to generate suggestions for 
novel materials with similar or potentially improved performance 
through inverse design.

➔ Inverse Design : 

❖ For GPT-3, inverse design is as simple as training the model 
with question and completion reversed. That is, answer the 
question ‘What is a photoswitch with transition wavelengths of 
324 nm and 442 nm, respectively’ with a text completion that 
should be a string of a meaningful molecule.

❖ Test to see whether our model can generate new 
structures upon asking it to generate molecules with 

transition wavelengths
similar to those from the provided dataset :
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Applications
❖ The fraction of valid SMILES indicates the fraction of generated 

SMILES that can successfully be parsed using RDKit.

❖ We then determine the fraction of those that are already part of the 
training set and find that at low temperature GPT-3 tends to restate 
molecules from the training set. 

❖ To quantitatively capture the similarity of the distribution of the 
generated molecules to the ones from the training set, we compute the 
Fréchet ChemNet distance, which quantifies both diversity and 
distribution match and goes through a minimum at intermediate 
temperatures.

❖ For quantifying how well the generated molecules match the desired 
transition wavelengths, we use the GPR models reported by ref. 43 to 
predict the transition wavelengths. The dashed horizontal lines 
indicate those models’ mean absolute error (MAE). Across all 
temperatures, we found high average synthesizability. 16



Applications
❖ To assess novelty, we compared our generated molecules to those in ref. 43 using molecular fingerprint 

distances. Figure 4 visualizes this by laying out the resulting approximate nearest-neighbour graph in two 
dimensions.
                    Fig. 4 | TMAP visualization of the generated photoswitches and the training set.

From this figure, we 
see that the generated 
molecules sometimes 
act as substitutions for 

existing ones in the 
dataset, while in other 
cases, they introduce 
entirely new scaffolds.
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Conclusion
Our results raise a very important question: how can a natural language model with no prior training in chemistry 
outperform dedicated machine learning models, as we were able to show in the case of high-entropy alloys and 
for various molecule, material and chemical reaction properties?

❖ To our knowledge, this fundamental question has no rigorous answer. The fact that we get good results 
independent of the chemical representation illustrates that these language models are very apt at extracting 
correlations from any text.

❖ A machine learning system built using GPT-3 works impressively well for a wide range of questions in 
chemistry—even for those for which we cannot use conventional line representations such as SMILES. 
Compared with conventional machine learning, it has many advantages. 

❖ GPT-3 supports diverse applications using a unified natural language Q&A approach, setting a strong 
baseline that future ML models must surpass.

❖ Using GPT-3 in research is like performing a literature search—it uncovers meaningful chemical correlations 
in text, offering new opportunities for chemists and materials scientists.
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Future Outlook
❖ If we say that the GPT-3 model is successful, it implies only that we have established that the GPT-3 

model has identified correlations in the current training data that can be successfully exploited to make 
predictions. However, this does not imply that the correlations are always meaningful or related to 
cause–effect relationships.

❖ Hence, our research does not stop here. The next step will be to use GPT-3 to identify these 
correlations and ultimately get a deeper understanding. 

❖ We argue that GPT-3 is only a tool to make more effective use of the knowledge scientists have 
collected over the years.

❖ It is also important to mention that while the training corpus contains chemistry information, many, if 
not most, scientific articles and results have not been seen by GPT-3. Hence, one can expect an even 
more impressive performance if these data are added to the training data.

❖
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Questions?
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Thank You
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