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Background

• The pace of discovering new materials is often slowed by the lack of efficient 
synthesis strategies. 

• Traditionally, synthesis relies on heuristics, which do not scale with the rapid 
growth of computational material predictions

• This project leverages Natural Language Processing (NLP) and Machine 
Learning (ML) to extract and analyze synthesis parameters from thousands of 
published scientific articles.

By building a large, structured database of synthesis conditions, we can:

• Understand key parameters influencing material properties

• Improve reproducibility and guide new syntheses

• Enable data-driven automation in materials design

Why This Matters: The Need for Data-Driven Synthesis
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Framework for Literature-Based Synthesis Extraction

Scientific Papers NLP-based Text Extraction
Structured Synthesis 

Parameters

Database of Conditions & 

Materials
Predictions & Insights for 

New Syntheses
ML Models
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Article Retrieval

Data Mining and Machine 

Learning

Verification of Annotated 

Data

Parsing and Extraction
Plain-Text Conversion and 

Classification

a
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Keyword Search Query

CrossRef API

List of DOIs (Unique Article 

Identifiers)

Publisher APIs (via 

CrossRef Click-Through)

Download Full-Text Articles 

(PDF / Plain Text)

PDF to Plain Text (watr-

works)

Body Text → Paragraph 

Segments

Word Embedding in Vector 

Form

Logistic Regression (Binary 

Classifier)

Classified Paragraphs 

(95% Accuracy)

Article Retrieval Plain-Text Conversion 

& Classification 8
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Methodology

Parsing and Extraction

Dependency Parsing 

(SpaCy + 

ChemDataExtractor)

Sentences are 

converted into parse 

trees. Key synthesis 

verbs (e.g., sinter, 

dissolve) are 

identified as root 

nodes.

Parameter Extraction 

via Tree Traversal

Material Detection & 

Validation

Neural Net Word 

Labeling (86% 

Accuracy)

From the verb, the 

tree is traversed to 

extract synthesis 

conditions (e.g., 

temperature, time, 

stirring speed).

Noun phrases (e.g., 

LiOH, ethanol) are 

matched against 

PubChem, an n-

gram classifier 

(82% accuracy), and 

ChemDataExtractor

.

A trained model 

classifies each word 

as Material, 

Operation, Condition, 

or Amount using 

embeddings from 

5000+ annotated 

examples.
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30 Articles Selected for 

Verification

Each Article Annotated by 

Two Experts

Independent Annotations 

Compared

Used to Confirm Annotation 

Consistency

Defines Upper-Bound for 

ML Performance

Extracted Parameters Stored in 

Central Database

Queried to Analyze Steps (e.g., 

Hydrothermal, Calcination)

Used to Train ML Models on 

Synthesis Data

Focus on Reaction Steps 

(Not Full Routes)

ML Models Built with scikit-learn 

& TensorFlow (e.g., Decision 

Tree)

Verification of 

Annotated Data

Data Mining and 

Machine Learning 10
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Results

Bulk vs Nano Trend:
Bulk materials are typically calcined at higher 
temperatures than their nanostructured counterparts.

Calcination Temperature 
Distribution Across Metal Oxide 

Systems (Bulk vs Nano)

Complexity Increases Temperature:
Calcination temperature increases with elemental 
complexity, from binaries to pentanaries, especially in 
nano syntheses.

Binary Oxide Range:
Most binary oxides fall between 450–550°C

• Alumina: found more in bulk

• ZnO: more in nano form

Ternary oxide Range:

• Bismuth Ferrite: sharp peak at 750°c(bulk)

and around 600°C for nano.

• Barium Titanate: wider range, 900-1100°C
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Results

Temperature–Time Distribution 
of Hydrothermal and Calcination 

Syntheses

•Hydrothermal reactions occur at 

low temperatures (typically 150–

200 °C) and long durations (12–24 

hours).

•Reaction temperatures are limited by 

the critical point of common 

solvents (e.g., water, ethanol).

•Calcination steps happen at much 

higher temperatures and usually 

shorter times.

•As material complexity increases, 

calcination temperatures and 

durations both rise.

•Simple systems concentrate around 

400–500 °C, <5 h, while complex 

ones extend to 800–900 °C, >5 h.
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Results

Key Features Identified:

NaOH concentration (most important , 
root node)
is commonly clustered around 1 M and 
10 M

Hydrothermal temperature also plays a 
significant role
Some notable peaks at 150°C and 
180°C

Annealing time was found to be less 
predictive, as its values didn’t clearly 
distinguish between outcomes.

Decision Tree for Titania Nanotube 

Formation

The model achieves 82% classification 
accuracy, showing that NaOH 
concentration and hydrothermal 
temperature are strong indicators of 
nanotube formation.
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Results

Machine-Learned Phase Diagram for 
Titania Nanotube Formation

The diagram shows higher probability of nanotube 
formation (darker green) at:

• High NaOH concentrations

• Lower hydrothermal temperatures

This reduced parameter space allows for easy 
visualization of synthesis trends using only 
experimentally accessible variables.
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Results

Machine-learned classifiers and 
predictions across materials systems

All four subfigures compare three 
models:
– Support Vector Machine (SVM) 
with Gaussian kernel
– Heuristic (simple rule-based)
– Random guessing

SVM consistently outperforms 
both the heuristic and random 
strategies.

Demonstrate robustness and 
transferability of machine 
learning models across materials 
and synthesis outcomes.
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Conclusion 

This work bridges the gap between published knowledge and predictive synthesis planning.

Built an 

automated 

framework to 

extract synthesis 

data using text 

mining and ML.

Compiled a large-

scale database of 

synthesis 

conditions from 

scientific literature.

Identified key 

parameters (e.g., 

temp, time, 

solvent) that 

influence material 

outcomes.

Enabled accurate 

predictions 

without prior 

domain knowledge 

or manual input.

18



20 June 2025

Future Outlook

hi

19



20 June 2025

Future Outlook

Extend coverage to more 

synthesis methods

Refine data accuracy
Weighting highly cited papers

Incorporating newly published 

research

Thin film deposition, catalytic 

systems, non-crystalline 

materials
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