THE SECULAR EQUATIONS

1. Derivation of the secular equations

In Hückel theory, the molecular orbital (MO) wavefunction, ψ, can be written as a linear combination of atomic orbitals, ϕ, as

$$
\begin{equation*}
\psi=\sum_{i} c_{i} \phi_{i} \tag{1}
\end{equation*}
$$

where ϕ_{i} is atomic orbital on atom i, c_{i} is the accompanying coefficient.
Now, we know that the energy of the system is given by the expectation value of the Hamiltonian operator as

$$
\begin{equation*}
E=\frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{2}
\end{equation*}
$$

where we have used the Dirac notation. We now substitute Eq. 1 into Eq. 2 to get

$$
\begin{equation*}
E=\frac{\int\left(\sum_{j} c_{j} \phi_{j}\right)^{*} \hat{H} \sum_{i} c_{i} \phi_{i} d \tau}{\int\left(\sum_{j} c_{j} \phi_{j}\right)^{*} \sum_{i} c_{i} \phi_{i} d \tau} \tag{3}
\end{equation*}
$$

Now, suppose we use real atomic orbitals with real coefficients, the above equation becomes

$$
\begin{align*}
E & =\frac{\int \sum_{j} c_{j} \phi_{j} \hat{H} \sum_{i} c_{i} \phi_{i} d \tau}{\int \sum_{j} c_{j} \phi_{j} \sum_{i} c_{i} \phi_{i} d \tau} \\
& =\frac{\sum_{j} \sum_{i} c_{j} c_{i} \int \phi_{j} \hat{H} \phi_{i} d \tau}{\sum_{j} \sum_{i} c_{j} c_{i} \int \phi_{j} \phi_{i} d \tau} \\
& =\frac{\sum_{i j} c_{j} c_{i} \int \phi_{j} \hat{H} \phi_{i} d \tau}{\sum_{i j} c_{j} c_{i} \int \phi_{j} \phi_{i} d \tau} \tag{4}
\end{align*}
$$

where in the last step, we have written the double summation using a shorthand notation.

We now define the following matrix elements:

$$
\begin{align*}
& H_{j i}=\int \phi_{j} \hat{H} \phi_{i} d \tau=\int \phi_{i} \hat{H} \phi_{j} d \tau=H_{i j} \tag{5}\\
& S_{j i}=\int \phi_{j} \phi_{i} d \tau=\int \phi_{i} \phi_{j} d \tau=S_{i j} \tag{6}
\end{align*}
$$

where the first equation follows since the Hamiltonian operator \hat{H} is Hermitian.
The energy expression in terms of these matrix elements now become

$$
\begin{equation*}
E=\frac{\sum_{i j} c_{j} c_{i} H_{i j}}{\sum_{i j} c_{j} c_{i} S_{i j}} \tag{7}
\end{equation*}
$$

According to the variational principle, that the best approximate to the wavefunction is obtained when the energy of the system is minimised. Therefore, we now need to minimise E with respect to the coefficients c_{i}. We can first writen Eq. 7 as

$$
E \sum_{i j} c_{j} c_{i} S_{i j}=\sum_{i j} c_{j} c_{i} H_{i j}
$$

Taking partial derivative of the above with respect to the coefficients c_{i} and using product rule on the left hand side, we have

$$
\begin{align*}
& \frac{\partial}{\partial c_{i}}\left[E \sum_{i j} c_{j} c_{i} S_{i j}\right]=\frac{\partial}{\partial c_{i}}\left[\sum_{i j} c_{j} c_{i} H_{i j}\right] \\
& \frac{\partial E}{\partial c_{i}} \sum_{i j} c_{j} c_{i} S_{i j}+E \sum_{j} c_{j} S_{i j}=\sum_{j} c_{j} H_{i j} \tag{8}
\end{align*}
$$

Note that the derivative of a double summation returns a single summation. You can imagine this by thinking about the term-wise differentiation in the double summation.

We now set $\frac{\partial E}{\partial c_{i}}=0$ in the above to obtain the coefficients for which the energy of the system is minimised. Thus, Eq. 8 becomes

$$
\begin{equation*}
E \sum_{j} c_{j} S_{i j}=\sum_{j} c_{j} H_{i j} \tag{9}
\end{equation*}
$$

which can be equivalently written as

$$
\begin{equation*}
\sum_{j}\left(H_{i j}-E S_{i j}\right) c_{j}=0 \tag{10}
\end{equation*}
$$

or, in matrix form

$$
\begin{equation*}
(\mathbf{H}-E \mathbf{S}) \mathbf{c}=\mathbf{0} \tag{11}
\end{equation*}
$$

2. HÜCKEL APPROXIMATIONS FOR THE SECULAR EQUATIONS

To simplify things, we write the matrix elements in the secular equations in terms of parameters α and β, where

$$
\begin{align*}
& \alpha_{i}=H_{i i} \tag{12}\\
& \beta_{i j}=H_{i j} \tag{13}
\end{align*}
$$

These are negative parameters that are approcimately the energy of orbital i and the energy of the interaction of the adjecent orbitals i and j, respectively.

To simplify things further, the Hückel approximations futher assumes that
(1) the overlap between orbitals is neglected, $S_{i j}=0$,
(2) the atomic orbitals are normalised, $S_{i i}=1$, and
(3) only adjecent orbitals have interactions, $H_{i j} \neq 0$ only if i and j are adjecent to each other.

Eq. 11, when written out in full, now has the form

$$
\left(\begin{array}{ccccc}
\alpha_{1}-E & \beta_{12} & \beta_{13} & \cdots & \beta_{1 N} \tag{14}\\
\beta_{21} & \alpha_{2}-E & \beta_{23} & \cdots & \beta_{2 N} \\
\beta_{31} & \beta_{32} & \alpha_{3}-E & \cdots & \beta_{3 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\beta_{N 1} & \beta_{N 2} & \beta_{N 3} & \cdots & \alpha_{N}-E
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

To obtain non-trivial solutions of linear combinations of atomic orbitals of a system, we set the secular determinants to zero, viz.,

$$
\left|\begin{array}{ccccc}
\alpha_{1}-E & \beta_{12} & \beta_{13} & \cdots & \beta_{1 N} \tag{15}\\
\beta_{21} & \alpha_{2}-E & \beta_{23} & \cdots & \beta_{2 N} \\
\beta_{31} & \beta_{32} & \alpha_{3}-E & \cdots & \beta_{3 N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\beta_{N 1} & \beta_{N 2} & \beta_{N 3} & \cdots & \alpha_{N}-E
\end{array}\right|=0
$$

This allows us to obtain N solutions of the eigenvalues E, each of which can be substituted back to Eq. 2 to obtain the coefficients (eigenvectors) that give the LCAO corresponding to the energy.

