
VECTORS

1. Introduction

A vector is a quantity that has both magnitude and direction. This is in contrast to
a (more familiar) scalar, which has only magnitude. Vectors are important as many
quantities are direction-dependent; examples of vectors which you may have encountered
include force, velocity and electric field. Here we will follow the physical approach and
leave the mathematical definitions to the mathematicians. We will first deal with vectors
in the Euclidean 3D space which allows easy visualisation, although we note that the
notion of vectors extend to higher dimensions.

2. Notation

In the Euclidean 3D space, a vector can be represented as an arrow having a start point
and an end point. Figure 1 shows 3 vectors. To distinguish vectors from scalars, we
put vector quantities in boldface when printing and underline it when writing. Vectors
represented by a single small letter can thus be written as a and b in printed work, or
as a and b in written work (this is the convention we adopt here). Sometimes, a tilde
is placed underneath the vector or an overhead arrow is used (e.g. a

∼
or ~a). If both the

start and the end points of the vector are given, then the vector can be represented as
−→
AB, where the overhead arrow directs from the start point, A, to the end point, B.

a

b

A
B

Figure 1. Geometrical representation of vectors.

A three-dimensional vector can be written as an ordered list of 3 elements; we can rep-
resent vector a = a as (a1, a2, a3) where ai, i = 1, 2, 3 are the components of the vector
a. We can generalise this to an n-dimensional vector, which we represent as an n-tuple,
that is, as an ordered list of n elements, i.e., (a1, a2, · · · , an). Note that these vector
components are unique for a given vector with an assosicated basis.
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2.1. Bases and Cartesian Coordinate System.
We introduce the concept of a basis. In n-dimension, the basis is a collection of n linearly
independent vectors. A set of vectors are linearly independent when no one vector can be
written as a linear combination of other vectors. These linearly independent vectors are
said to span the n-dimensional space. This means that any given n-dimensional vector can
be written as a linear combination of these basis vectors. Specifically in three-dimension,
we can write any vector r as

r = αa+ βb+ γc (1)

where the three non-coplanar vectors {a, b, c} constitutes a basis. Note that the choice
of basis is not unique; any three non-coplanar vectors may be chosen.

In the Cartesian coordinate system (Figure 2), we choose orthonormal basis and denote
these as {i, j, k}, each in the x-, y- and z-direction respectively. They are orthogonal to
one another, i.e.,

i · j = j · k = k · i = 0 (2)

and normalized, that is they have unit length, viz.,

i · i = j · j = k · k = 1. (3)

In the Cartesian coordinate system, therefore, any vector a can then be written as a =
axi+ ayj + azk, where ax, ay and az are scalars. In fact, you should have noticed that in
the above, we have written the vector a as a 3-tuple, (ax, ay, az). This is strictly an abuse
of notation as we have implicitly assumed that a basis has been adopted and subsequently
suppressed in that notation.

x y

z

a

i j
k

ax ay

az

Figure 2. Cartesian coordinate system showing a vector and its compo-
nent along the basis vectors.

By convention, we also choose the Cartesian coordinate to be right-handed coordinate
system. This means that if we use the right-hand rule going from x-axis to y-axis, our
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thumb will point to the z-axis. Following this definition, the basis vectors obey the
following cross product (see later) relations:

i× j = k j × k = i k × i = j (cyclic) (4)

j × i = −k k × j = −i i× k = −j (anti-cyclic) (5)

which can be remembered more easily as

j

i

k

cyclic realtions give positive sign

j

i

k

anti-cyclic realtions give negative sign

2.2. Magnitude, Zero Vectors and Unit Vectors.
We can now define various vectors in terms of their components in the Cartesian basis.
The magnitude of a given vector, a, is a scalar and is denoted by a = |a| = |a|. For a
three-dimensional vector, a = (a1, a2, a3), we have

a =
√

(a2
1 + a2

2 + a2
3) (6)

and more generally, for an n-dimensional vector, its magnitude is given by

a =
√

(a2
1 + a2

2 + · · ·+ a2
n) =

√√√√ n∑
i=1

a2
i (7)

where ∑ is the summation sign. Note that a ≥ 0 since the length of a vector cannot be
negative; the equality holds when the components ai = 0 for all i = 1, 2, · · · , n, i.e., when
the vector is a zero vector. Also note that Equations (6) and (7) are true for coordinate
systems with orthonormal basis.

Example 2.1. Find the magnitude of the following vectors: (i) a = (1, 2, 3, 4) and (ii)
p = (2,−3, 9).

Solution 2.1. (i) The magnitude of a = (1, 2, 3, 4) is given by |a| =
√

12 + 22 + 32 + 42 =
√

30.

(ii) The magnitude of p = (2,−3, 9) is given by |p| =
√

22 + (−3)2 + 92 =
√

94.

A zero vector has no magnitude and can take any direction. This is denoted by 0 in
printing or by 0 in writing to distinguish it from the scalar zero.

A unit vector is a vector that has a magnitude of one (unity) and a specified direction.
It is denoted with a caret (or hat) on top of the vector. For example, â is a unit vector
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with unity magnitude and takes the direction of the vector a. A unit vector can be
obtained from any vector by dividing the vector by its magnitude, i.e.,

û = u
|u|

= u

|u|
(8)

Example 2.2. Find the unit vector of the following vectors: (i) a = (1, 2, 3, 4) and (ii)
p = (2,−3, 9).

Solution 2.2. We have the magnitudes of these vectors from Example 2.1. Therefore,

(i) the unit vector of a = (1, 2, 3, 4) is given by â = 1√
30

(1, 2, 3, 4).

(ii) the unit vector of p = (2,−3, 9) is given by p̂ = 1√
94

(2,−3, 9).

Two vectors are equal when they have the same magnitude and direction. In Figure 1,
we have ~a = −→AB. This implies that a vector only depends on the relative positions of its
start and end points. Although vector ~b has the same magnitude as the other two, it has
a different direction, thus it is a different vector.

3. Vector Algebra

3.1. Addition of Vectors.
Figure 3 shows the addition of two vectors a and b. We can think of a as the displacement
between point A and point B, i.e., a = −→AB. A displacement is a vector as it has both
magnitude and direction. If we want to go from point A to point C, we could go directly
or we could go via B. Vectorially, we represent this as −→AC = −→AB +−→BC. We can simply
write this as

c = a+ b, (9)

where a = −→AB and so on. This illustrates the addition of vectors. We obtain the resultant
vector, c, by joining the head of a vector, a, to the tail of another vector, b, at a common
point B.

a
b

A

B

C

c

Figure 3. Vector addition by joining the adding vectors from head to tail
to get the resultant vector.
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We can therefore define the addition of vectors by the composition of their assosicated
displacements as given in Equation (9). The resultant vector is obtained by the operation
on the components of the adding vectors.

Example 3.1. Find the resultant vector of the following vector additions: (i) a+b where
a = (1, 2, 3, 4) and b = (5, 6, 7, 8) and (ii) p + q where p = (2,−3, 9) and q = (−2, 3,−9).

Solution 3.1. We add the vectors component-wise to obtain

(i) a+ b = (1, 2, 3, 4) + (5, 6, 7, 8) = (6, 8, 10, 12)

(ii) p + q = (2,−3, 9) + (−2, 3,−9) = (0, 0, 0) = 0 = 0

3.2. Subtraction of Vectors.
Given a vector a representing the displacement from point A to point B, i.e., a = −→AB,
we can define another vector b = −a that goes from point B to point A. Vector b has the
same magnitude as vector a, but has the opposite direction as vector a; this is indicated
by the negative sign.

We can thus think of the subtraction of a vector from another as the addition of the
same vector in the opposite direction. In Figure 4, to subtract vector b from vector a, we
simply add vector −b to it, i.e.,

a− b = a+ (−b) = c. (10)

We call vector −b the additive inverse of vector b since they add up to the zero vector,
i.e., b+ (−b) = 0.

a

b−b

A

BC

c

Figure 4. Vector subtraction by the addition of the additive inverse.

3.3. Multiplication by a scaler.
We can multiply a vector by a (real) scalar to form another vector. Suppose we multiply
a vector a by a scalar λ, we obtain a new vector denoted by λa. The resultant vector
has the magnitude of |λa|. Furthermore, if λ is positive, then the resultant vector has
the same direction as the original vector. If, on the other hand, λ is negative, then the
resultant vector has the opposite direction as the original vector. If instead, vector a is
multiplied by 0, then the result is a vector with zero magnitude. In other words, any
non-zero vector, when multiplied by the scalar 0, gives the zero vector.
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Example 3.2. Find the resultant vector when the following vectors are multiplied by a
scalar: (i) λa where a = (1, 2, 3, 4) and λ = −2 and (ii) λp where p = (2,−3, 9) and
λ = 0.

Solution 3.2. We multiply each component of the vector to obtain

(i) λa = −2(1, 2, 3, 4) = (−2,−4,−6,−8)

(ii) λp = 0(2,−3, 9) = (0, 0, 0) = 0 = 0

3.4. Commutativity and Associativity of vector additions and Distributivity
of scalar multiplications.
Since vectors depend only on their relative positions, we can translate a vector without
changing it. Consider the vector addition in Figure 5. We can go from point A to point
C by going via point B, in which case, we obtain the resultant vector c = a + b. Since
vectors are invariant to translation, we note that vector −→AB = a =

−−→
B′C and that vector

−→
BC = b =

−−→
AB′. Therefore, we can go from point A to point C via point B′, thus

obtaining c = b+ a. Therefore, we have shown that vector additions are commutative,
i.e.,

a+ b = b+ a. (11)

a

a

b

b

A

B

B′

C

c

Figure 5. Commutativity of vector addition by considering a parallelogram.

Vector additions are also associative. This is the same as for the addition of scalars.
Vectorially, we have

a+ (b+ c) = (a+ b) + c ≡ a+ b+ c (12)

We can show this easily by considering the geometry of a parallelepiped (Figure 6). Here,
we could go from point A to point E by following any three edges of the parallelepiped and
adding the three vectors a, b and c in any order. Algebraically, the commutativity and
associativity of vector additions follow directly from the commutativity and associativity
of the components of the vectors.
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cb

a

A

B

C
D

E

Figure 6. Associativity of vector addition. We can go from point A to
point E following any three edges of the given parallelepiped, thus adding
the three vectors in any order.

Vector multiplication by a scalar is distributive over addition,

λ(a+ b) = λa+ λb, (13)

which follows directly from the component-wise manipulation of the vectors.

4. Scalar Product

We have seen the multiplication of a vector by a scalar as well as the addition and
subtraction of vectors. Here we define an operation that combines two given vectors to
return a scalar. The scalar product or the dot product between two vectors a and b

is given by
a · b = |a||b| cos θ (14)

where θ is the angle formed by the two vectors (Figure 7).

We can interpret the scalar product as the product of the length of vector a (|a|)and the
length of the projection of the vector b on vector a (|b cos θ|).

|b| cos θ

θ
a

b

Figure 7. Definition of scalar product.
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Algebraically, in terms of the components of the two vectors, we have

a · b = (a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3 =
3∑

i=1
aibi (15)

in three-dimension. More generally, for two n-dimensional vectors, we have,

a · b = (a1, a2, · · · , an) · (b1, b2, · · · , bn) = a1b1 + a2b2 + · · ·+ anbn =
n∑

i=1
aibi. (16)

where we have assumed that the orthonormal basis has been used.

Note that the result of a scalar product of two vectors is a number, thus the name scalar
product. The dot notation of the scalar product gives rise to the alternative name of the
dot product.

Example 4.1. Find the scalar product of the following vectors: (i) a · b where a =
(1, 2, 3, 4) and b = (5, 6, 7, 8), (ii) p ·q where p = (2,−3, 9) and q = (−2, 3,−9), (iii) a ·a
and (iv) a · b given that the vectors are perpendicular to each other.

Solution 4.1. Using the general formula Equation (16), we have

(i) a · b = (1, 2, 3, 4) · (5, 6, 7, 8) = 1× 5 + 2× 6 + 3× 7 + 4× 8 = 70

(ii) p · q = (2,−3, 9) · (−2, 3,−9) = 2× (−2) + (−3)× 3 + 9× (−9) = −94

(iii) a · a = |a||a|cos0 = |a|2

(iv) Since the vectors are perpendicular, the angle between them are 90o = π/2, thus, we
have a · b = |a||b|cos(π/2) = 0

Note that the results are scalars, as expected.

The converse of part (iv) in the above example is that, if a · b = 0, then either (1) vectors
a and b are perpendicular, in which case they are said to be orthogonal, or (2) one (or
both) of these two vectors is (are) zero vector(s).

Example 4.2. A vector b can be resolved into two component vectors, one parallel to and
the other perpendicular to a given unit vector û (Figure 8). The part that is parallel to û
is given by (b · û)û and the remaining part that is perpendicular to û is given by b− (b · û)û
since b · û = |b||û| cos θ = |b| cos θ where we have used the fact that the unit vector has a
magnitude of unity, |û| = 1.
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b− (b · û)û

(b · û)û

θ
û

b

Figure 8. One can resolve a given vector into two component vectors that
are parallel and perpendicular to a given unit vector.

Scalar products are commutative, that is

a · b = b · a (17)

It is also distributive over addition, that is

a · (b+ c) = a · b+ a · c (18)

Additionally, when a scalar product is multiplied by a scalar, we have

λ(a · b) = (λa) · b = a · (λb) (19)

The above three equations follow directly by considering the operation of the components
of the vectors. For Equation (18), we can consider a geometrical proof. Consider Figure
9. The projection of vector (b + c) onto vector a is given by the the scalar product
(b+ c) · a = |(b+ c)||a| cos θ = |a|

∣∣∣−−→ON ∣∣∣ = a · (b+ c). Therefore, we have

a · (b+ c) = |a|
∣∣∣−−→ON ∣∣∣ = |a|(

∣∣∣−−→OM ∣∣∣+ ∣∣∣−−→MN
∣∣∣) = |a|

∣∣∣−−→OM ∣∣∣+ |a|∣∣∣−−→MN
∣∣∣ = a · b+ a · c (20)

�

O

b

c

M N

θ a

b+ c

Figure 9. Proof of distributivity of scalar product using geometrical argument.
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A nice application of the scalar product and its associated properties is the derivation of
the cosine rule. Consider Figure 10. We have

|c|2 = |a+ b|2

= (a+ b) · (a+ b)

= a · a+ a · b+ b · a+ b · b

= a · a+ 2a · b+ b · b

= |a|2 + |b|2 + 2|a||b|cos(π − θ)

= |a|2 + |b|2 − 2|a||b|cos(θ) (21)

�

a b

A

B

C

c

θ

π − θ

Figure 10. Vector addition by joining the adding vectors from head to
tail to get the resultant vector.

Physical Illustration 4.1. The mechanical work is the dot product of the force
vector and the displacement vector.

W = ~F · ~r (22)

The work done is the product of the force and the distance in the direction of the
force. From the diagram, we note that the magnitude of the force ~F in the direction
of the displacement vector is given by

∣∣∣~F ∣∣∣ cos θ, thus the work done in moving the
block is (

∣∣∣~F ∣∣∣ cos θ)(|r|) =
∣∣∣~F ∣∣∣|r| cos θ = ~F · ~r.
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Physical Illustration 4.2. The flux of a vector field is the dot product of the
field vector and the vector surface area.

Φ = ~F · ~S (23)

The magnetic flux, ΦB, measures the total magnetic field ~B passing through
a given surface area. This is given by the product of the normal component
of the magnetic field and the surface area that the field passes through. Thus,
ΦB = (

∣∣∣ ~B∣∣∣ cos θ)(~S) =
∣∣∣ ~B∣∣∣~S cos θ = ~B · ~S.

Similarly, the electric flux, ΦE, measures the total electric field ~E passing through
a given surface area. This is given by the product of the normal component of
the electric field and the surface area that the field passes through. Thus, ΦE =
(
∣∣∣ ~E∣∣∣ cos θ)(~S) =

∣∣∣ ~E∣∣∣~S cos θ = ~E · ~S.

5. Vector Product

Having seen the operation between two vectors that returns a scalar as a result, we
introduce here another operation that returns a vector from the composition of two
vectors. The vector product or the cross product between two vectors a and b is
defined by

a ∧ b = |a||b| sin θn̂ (24)

where the angle θ is the smaller angle between vectors a and b; n̂ is the unit vector
perpendicular to both vectors a and b in the direction formed by the right-hand rule from
a to b (Figure 11). We note that the result of this operation is a vector, thus the name
vector product. Sometimes, we denote the vector product as a × b, which gives rise to
the alternative name of the cross product.
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a

b

a ∧ b ≡ a× b

θ

b ∧ a ≡ b× a = −a× b

Figure 11. Definition of vector product using the right-hand rule.

Note that if instead we have b × a, then the right hand rule would give the resultant
vector that is in the opposite direction to that given by a× b, thus, we have

b× a = −a× b (25)

We can easily find the cross product of two given vectors in Cartesian coordinate system.
Suppose vector a = a1i+a2j+a3k and vector b = b1i+b2j+b3k, then their cross product
can be written as a determinant,

a× b =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ (26)

which is a 3 × 3 determinant that expands out to be a sum of 2 × 2 determinants that
further simplifies to give a vector, viz.,

a× b =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ = i

∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣− j
∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣+ k

∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣
= i(a2b3 − b2a3)− j(a1b3 − b1a3) + k(a1b2 − a2b1) (27)

One property of determinants is that they change sign when any two rows or two columns
are interchanged. If we write b× a as a determinant, then we have

b× a =

∣∣∣∣∣∣∣∣∣
i j k

b1 b2 b3

a1 a2 a3

∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ = −a× b

which is what we expect from geometrical arguments using the right-hand rule.
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When a cross product is multiplied by a scalar, λ, we have

λ(a× b) = (λa)× b = a× (λb). (28)

This can easily be proven using the definition of vector product (Equation 24) or using
the property of determinant that

(λa)× b =

∣∣∣∣∣∣∣∣∣
i j k

λa1 λa2 λa3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ = λ

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

λb1 λb2 λb3

∣∣∣∣∣∣∣∣∣ = a× (λb) (29)

where we have used the property of a determinant to factor out (or multiply in) a common
factor from (or to) any row. Thinking geometrically using the right hand rule and noting
that multiplying a vector by a scalar either preserves its direction or reverses it would
allow us to reach the same conclusion.

Vector product is distributive over addition, that is

a× (b+ c) = a× b+ a× c. (30)

To prove this, we introduce the concept of a vector area.

5.1. Vector Area.
Define vector area S as a directed surface area with magnitude |S| and direction per-
perdicular to the surface. The ambiguity of the direction is fixed by applying the right
hand rule around the perimeter of the area such that the thumb points to the direction of
the vector area. We call this the outwards direction (Figure 12) and denote it by a unit
vector n̂. We can also project this vector area onto the xy-plane and obtain a projected
area given by S · k where k is the unit vector in the z-direction. This is important when
we consider surface integrals later.

x y

z

area S · k

k̂

S

S = Sn̂

Figure 12. Definition of vector area as a directed surface with area S in
the direction of unit normal vector n̂. We also show its projection onto the
xy-plane.
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For a general surface, the directed surface area is only dependent on its rim. We can
think of this as dividing the surface into small vector area elements δS such that those
falling outside the rim have opposite unit normal vectors and cancel (Figure 13).

x y

z δS

area S · k

Figure 13. A general vector area with its projected area in the xy-plane.
Note that the projected area depends only on the rim of the general surface.

In the limit when we divide the vector area into infinite pieces of vector area elements,
we integrate to obtain the total vector area of the general surface,

S =
∫
dS. (31)

By the argument above, we also note that the vector area of a closed surface is zero, i.e.,∮
dS = S = 0. (32)

From the definition of vector product (Equation 24), we know that a×b gives the directed
area of the parallelogram formed by the two vectors a and b where the direction of the
area is normal to both vectors a and b and is given by the right hand rule.

n̂ b

a

θ h = |b| sin θ

Figure 14. The (directed) area of a parallelogram is given by the cross
product of the two vectors forming its sides. The direction of the resultant
area follows the right-hand rule.

c©Xinglong Zhang 2016 14



Notes on Vectors ZHANG XINGLONG

We are now in a position to prove the distributive law of vector product. Consider the
closed surface area in Figure 15. Since the areas are closed, the vector areas sum to zero.
When adding the vector areas, the vector area from the top and that from the bottom
of the prism cancel as they have opposite outward normal vectors. This implies that the
sum of the vector areas from the three sides of the prism gives zero contribution:

b× a+ c× a+ a× (b+ c) = 0

=⇒ a× (b+ c) = −b× a− c× a)

=⇒ a× (b+ c) = a× b+ a× c

b

c
b+ ca

Figure 15. Proof of the distibutivity of vector product by considering the
sum of the vector areas of a triangular prism.

This completes our proof of the distributivity of vector product.

Physical Illustration 5.1. The magnetic force, ~F , experienced by a charge +q
moving with velocity ~v in a magnetic field ~B, is given by the cross product of q~v
and ~B.

~F = q~v × ~B (33)

~B

~v

~F

+q

Again, by definition, the magnetic force is in a direction that is perpendicular to
both the velocity vector of the moving charge and the magnetic field. The direction
is given by the right hand rule.

c©Xinglong Zhang 2016 15



Notes on Vectors ZHANG XINGLONG

Physical Illustration 5.2. The angular momentum of a particle, ~L, is given
by the cross product of its position vector ~r and momentum vector ~p.

~L = ~r × ~p (34)

The angular momentum of a particle rotating about an origin is given by ~L = I~ω

where
I = mr2 (35)

is the moment of inertia of the particle with mass m and

ω = ~r × ~v
r2 (36)

is the angular velocity of the particle about the origin.
Subsituting these equations, we have

~L = I~ω = (mr2)
(
~r × ~v
r2

)
= m(~r × ~v) = ~r × (m~v) = ~r × ~p (37)

Note that, by definition, the angular momentum of the particle is in a direction that
is perpendicular to both its position and velocity vectors.

Physical Illustration 5.3. The torque on an electric dipole produced by the
electric field that the dipole is in is given by the cross product of the dipole moment
~p and the electric field ~E.

~τ = ~p× ~E (38)

Supppose we have a neutral diatomic molecule with dipole moment ~p = q~r where q
is the charge and ~r is the displacement vector from the positive end to the negative
end. When placed in an electric field (as shown in the figure), each of the two
charges experiences a force given by ~F = q ~E.
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We can resolve each of the forces into parallel and perpendicular components. We
note that the forces causing the stretching of the molecule (i.e.

∣∣∣ ~F1

∣∣∣ cos θ and∣∣∣ ~F2

∣∣∣ cos θ; along the dipole) cancel each other as they have the same magnitude
but are in opposite directions.
The components of the force perpendicular to the dipole cause rotational motion
(i.e. a torque) of the molecule about its centre of mass and the magnitude of this
torque is given by

|~τ | =
(∣∣∣ ~F1

∣∣∣ sin θ) (r2
)

+
(∣∣∣ ~F2

∣∣∣ sin θ) (r2
)

=
∣∣∣~F ∣∣∣|~r| sin θ

=
∣∣∣~F ∣∣∣|~r||n̂| sin θ

=
∣∣∣q ~E∣∣∣|~r||n̂| sin θ

= |q~r|
∣∣∣ ~E∣∣∣|n̂| sin θ

=
∣∣∣~p× ~E

∣∣∣
where we have noted that

∣∣∣ ~F1

∣∣∣ =
∣∣∣ ~F2

∣∣∣ =
∣∣∣~F ∣∣∣ and have introduced a unit normal

vector n̂ that is perpendicular to both ~F and ~r (|n̂| = 1).
In vector notation, we then obtain Equation (38). The direction of the resultant
torque is fixed using the right hand rule.
Note that, by definition, the torque produced by the electric field on the dipole is in
a direction that is perpendicular to both the dipole moment and the electric field.

6. Scalar and Vector Triple Products

6.1. Scalar Triple Product.
We define the scalar triple product of three vectors, a, b and c, as

[a, b, c] = a · (b× c) (39)
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The result of this composition is a scalar that equals to the volume of the parallelepiped
formed by the given three vectors a, b and c. Note that the scalar triple product is
non-zero if the three vectors are non-coplanar, that is the three vectors do not all lie on
the same plane. This is equivalent to the condition that the three vectors are linearly
independent.

We can prove that the scalar product gives the volume of the parallelepiped by considering
Figure 6. The vector product b × c gives the (directed) base area of the parallelogram
and its subsequent dot product with vector a gives the height of the parallelepiped from
the parallelogram base area. Thus the resultant scalar gives its volume. The volume of
the parallelepiped can also be formed from different permutations of the three vectors,
giving rise to the cyclic relations of the scalar triple products, viz.,

[a, b, c] = [c, a, b] = [b, c, a] . (40)

We also note that any pairwise swop in the scalar product results in a sign change, that
is,

[a, b, c] = − [b, a, c] (41)

and so on.

This pairwise swop and its associated sign change is easily represented (and reproduced)
by a determinant of the components of the three vectors, which correctly gives the volume
of the parallelepiped formed by the three vectors. That is, we have

[a, b, c] = a · (b× c) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣ (42)

which, as the property of determinants have it, changes sign under the any pairwise
permutation of positions.

6.2. Vector Triplet Product.
The vector triple product of three vectors a, b and c is defined as the vector that is
formed from the product of vector a and vector b × c, that is, the vector triple product
is given by

a× (b× c). (43)

A useful identity of the vector triple product is

a× (b× c) = (a · c)b− (a · b)c. (44)

Before we prove this identity, we note that the vector product b × c gives a resultant
vector that is normal to both vectors b and c. When vector a crosses with this resultant
vector, the final vector has a direction that is normal to both vectors a and the resultant
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vector, thus, it has a direction that is coplanar with vectors b and c. Therefore, we note
that the vector triple product can be written as a linear combination of vectors b and c,
which suggests that Equation (44) is plausible.

Again, using Equation (27), we can write the vector triple product as a determinant. We
have

a× (b× c) =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

(b2c3 − c2b3) − (b1c3 − c1b3) (b1c2 − b2c1)

∣∣∣∣∣∣∣∣∣ (45)

To prove identity (44), note that for a vector in Cartesian coordinate given by r =
ai + bj + ck, we can extract the components of vector r by considering the dot product
of the vector with the basis vector for that component. To obain the value of scalar b,
we simply dot the vector r with the basis vector j, so that we have

j · r = j · (ai+ bj + ck) = a(j · i) + b(j · j) + c(j · k) = b

where we have used the orthonormality of the basis vectors (Equations 2 and 3).

With this in mind, we can easily obtain the x-component of the vector triple product.
This is given simply by

i · a× (b× c) = a2(b1c2 − b2c1)− a3[−(b1c3 − c1b3)]

= a2c2b1 − a2b2c1 + a3c3b1 − a3b3c1

= a2c2b1 − a2b2c1 + a3c3b1 − a3b3c1 + [a1c1b1 − a1c1b1]

= (a1c1 + a2c2 + a3c3)b1 − (a1b1 + a2b2 + a3c3)c1

= i · [(a · c)b− (a · b)c] (46)

where we introduced extra terms in the third equality.

The y- and z-components of the vector triple product can be similarly proven, giving the
final result of Equation (44). The same identity can be proven using the tensor method.

This identity of vector triple product allows us to verify that the vector product is not
associative. Consider

(a× b)× c = −c× (a× b)

= −(c · b)a+ (c · a)b

= (a · c)b− (c · b)a

6= (a · c)b− (a · b)c

= a× (b× c) (47)
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where the first equality follows from the anti-commutativity of vector product and the
second from the identity (Equation 44).

7. Vector Representation of Lines and Planes

7.1. Equations of Lines.
We can think of a straight line as a collection of points. That is, a line is an example of
a locus, which is a collection of points satisfying a set of given conditions. In Euclidean
3D space, any point can be represented by a vector having three components; we can
write a point as r = (x0, y0, z0) wherein the Cartesian basis is assumed. A line is thus a
collection of such points so that it can take the vector form of r = (x, y, z) with x, y, and
z being variables. As they take on different values, the resultant vector gives different
points on the straight line.

a
r

d̂

O

Figure 16. A vector representation of a straight line.

To specify a line in vector form, we only need to specify a point on the line and the
direction vector of the line (Figure 16). Suppose a is a point on the line and d̂ is the unit
vector giving the direction of the line, then a variable point on the line, represented by
r, can be obtained using vector addition

r = a+ λd̂ (48)

where |λ| gives the distance between the points at a and r. As the value of λ varies, the
position vectors r traces out the whole straight line.

We can obtain an alternative form of the straight line using cross product. To do so, we
can take the cross product of Equation (48) with the direction vector on both sides to
obtain

r × d̂ = (a+ λd̂)× d̂ = a× d̂+ λd̂× d̂ = a× d̂ (49)

where we note that the cross product of any vector with itself returns the zero vector.

We know that any straight line passing through two points is unique, therefore, another
way to specify a straight line is using two points. In such case, we can find the direction
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of the line using the vectors representing the two points and proceed as above to obtain
the equation of the line.

7.1.1. Perpendicular distance from a point to a line. Now, consider a point outside a
given line (Figure 17). We want to find the perpendicular distance, h, from the point to
the line. The geometrical argument gives the distance as

h = |b− a| sin θ =
∣∣∣d̂∣∣∣|b− a| sin θ|n̂| = ∣∣∣d̂× (b− a)

∣∣∣ (50)

where we introduced the unit vector in the direction of the line, n̂, and the unit vector n̂
that is perpendicular to both vectors d̂ and (b − a) to satisfy the definition of the cross
product.

a

b− a

b

h

d̂

θ

O

Figure 17. Finding the distance from a point to a line using geometrical argument.

7.1.2. Shortest distance between two skew lines. Figure 18 shows two skew lines l1 and
l2 having non-parallel direction vectors l̂ and m̂. We wish to find the shortest distance
between these two lines, h = PQ. The vector equations of these two lines are given by

l1 : r = a+ λl̂

l2 : r = b+ µm̂.

Since point P is on l1, we have−→OP = a+λl̂ for some real λ; similarly, we have−→OQ = b+µm̂
for some real µ. Thus, we have,

−→
PQ = −→OQ−−→OP = h = b+ µm̂− a− λl̂ (51)

Now, −→PQ is normal to both lines, i.e., perpendicular to both direction vectors of the
lines, which implies that −→PQ is parallel to the vector product of the direction vectors,
l̂× m̂ (remember that the normal vector of a vector product is perpendicular to both the
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l1

l2

h = |h|

P

Q
a

b

l̂

m̂

O

Figure 18. Illustration of two skew lines having the shortest distance
between them denoted by h.

“crossing” vectors). We can thus take the dot product of Equation (51) to get rid of both
unit vectors l̂ and m̂ in it:

−→
PQ · (l̂ × m̂) = (b+ µm̂− a− λl̂) · (l̂ × m̂)

h · (l̂ × m̂) = (b− a) · (l̂ × m̂)

Noting that the vector h is parallel to the vector l̂× m̂, we can expand the left-hand side
to h · (l̂ × m̂) = |h|

∣∣∣l̂ × m̂∣∣∣ cos 0 = |h|
∣∣∣l̂ × m̂∣∣∣. Thus the equation above simplifies to give

the shortest distance between two skew lines as

h = |h| =

∣∣∣∣∣∣(b− a) · (l̂ × m̂)∣∣∣l̂ × m̂∣∣∣
∣∣∣∣∣∣ (52)

7.2. Equations of Planes.
Here again, we think of planes as a collection of points in the Euclidean 3D space. A
plane is simply another example of a locus. Given any two non-collinear vectors, l and
m, we can express any point using a linear combination of these two vectors. That is,
the two vectors span the two-dimensional space, tracing out a plane. With only these
two vectors, the plane is not unique as it can be shifted parallel to both vectors to give
a family of planes. If however, the plane is required to additionally pass through a given
point, a, then it is uniquely defined. Thus, we can define a plane in vector form as

r = a+ λl + µm (53)

where again, the scalars λ and µ can take all real values so that any point on the plane
corresponds to a specific set of λ and µ values.

Figure 19 illustrates this concept. Any point on a plane that passes through a point A
with two given direction vectors l and m, can be represented by a position vector r. To
obtain this position vector r = −→OR, we add vectorially so that −→OR = −→OA + −→AB + −→BR,
giving the definition of the plane in Equation (53).
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l

m

n̂

r

R

A

B

a

λl

µm

O

h

Figure 19. Equation of a plane as a collection of points with position
vector r.

We can obtain an alternative form of the vector equation of a plane by noting that the
normal vector to the plane is simply given by the cross product of vectors l and m, that
is, n̂ ∝ l×m. We could then take the dot product of Equation (53) with n̂ on both sides
to obtain

r · n̂ = (a+ λl + µm) · n̂

= a · n̂+ λl · n̂+ µm · n̂

= a · n̂

= h

where the second last equality follows since vector n̂ is normal to both vectors l and m

and the last follows since a · n̂ gives the length of projection of vector a in the direction
of the vector n̂, which gives the perpendicular distance, h, from the origin to the plane
(Figure 19). Therefore, we have

r · n̂ = a · n̂ = h (54)

We also note that three points specify a unique plane. We can form two direction vectors
using any two points from the given three and together with any one point, we will be
able to find the equation passing through these three points using the procedure above.

7.2.1. Distance from a point to a plane. Here, we want to find the perpendicular distance
from a point A whose position vector is a to a plane with an equation

r · n̂ = h (55)

(Figure 20). We note that the line passing through line segment AB has the same
direction as the normal vector of the plane n̂. Therefore, we can write the equation of
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this line as
r = a+ λn̂

for all real values of λ.

Since the point B lies on this plane, its position vector is given by

r = a+ λ0n̂ = a+ kn̂ (56)

for some real value λ0. Note that λ0 = k, giving the distance from point A to point B.

Now, point B also lies on the given plane, thus, its position vector satisfies the equation
of the plane as well. Substituting Equation (56) to Equation (55), we obtain

(a+ kn̂) · n̂ = h

=⇒ a · n̂+ k = h

=⇒ k = |h− a · n̂| (57)

k

A

B

a

O

h

C

n̂

θ

Figure 20. Distance from a point given by position vector a to a given plane.

The result above simply says that distance k is obtained by subtracting the length of
projection of vector a onto the normal vector of the plane â from distance h. This is
simply

k = |h− |a| cos θ| (58)

which follows directly from geometrical argument.

7.2.2. Common point on three given planes. Given the vector equations of three planes

Π1 : r · a = l (59)

Π2 : r · b = m (60)

Π3 : r · c = n (61)
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where a, b and c are the normal vectors of the three planes respectively. We wish to find
the point (if any) of the three intersecting planes. Algebraically, we could solve the three
equations with three unknowns simultenousely. However, we will consider solving this
using vector algebra.

We consider any two planes first. Suppose we consider planes Π1 and Π2. These two
planes intersect at a common line whose direction vector is perpendicular to the normal
vectors of both planes, that is the direction vector of the resulting line is parallel to a× b.
Using Equation (49), we can write the vector equation of the intersecting line as r×(a×b)
which expands, using the vector triple product identity (Equation 44), to

r × (a× b) = (r · b)a− (r · a)b

= ma− lb (62)

We note that any point that results from the intersecting planes will not only satisfy the
equation of the intersecting line above, but also the equation of the plane Π3. This implies
that the position vector r that satisfies Equations (61) and (62) is the point intesected
by all three planes. To proceed, we take the vector product of Equation (62) with the
normal vector c to obtain

m(c× a)− l(c× b) = c× [r × (a× b)]

= c · (a× b)r − c · r(a× b)

= [c, a, b] r − n(a× b)

= [a, b, c] r − n(a× b)

=⇒ r = l(b× c) +m(c× a) + n(a× b)
[a, b, c] (63)

We can easily check that this point satisfies the equations of the planes (59), (60) and
(61). It is also evident that the condition for there to be a point of intersection of three
given planes is that [a, b, c] 6= 0, which requires the normal vectors of the three planes to
be non-coplanar.

THE END
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