
MOLECULAR VIBRATIONS

Here we wish to investigate molecular vibrations and draw a similarity between
the theory of molecular vibrations and Hückel theory.

1. Simple Harmonic Oscillator

Recall that the energy of a one-dimensional harmonic oscillator is given by the
sum of the kinetic and potential energy. Suppose a particle of mass m is moving
in a potential given by V (x) = 1

2kx
2 in one-dimension, then, the Hamiltonian is

given by

H = 1
2mẋ

2 + 1
2kx

2 (1)

where the first term is the kinetic energy and the second the potential energy.

Classically, the particle obeys Newton’s Law, which states that:

mẍ = −dV
dx

(2)

giving rise to the following equation of motion upon substituting the form of the
potential V (x) = 1

2kx
2:

mẍ = −kx (3)
which solves to give oscillatory solutions having the form of sin, cos or exponential.
We could choose the cosine form:

x(t) = A cos(ωt+ φ) (4)

where A and φ are constants determined by initial conditions (since Eq. (3) is
a second-order differential equation, we expect two constants here) and ω is the
angular frequency given by

ω =
√
k

m
(5)

Using Eq. (5), we could write the Hamiltonian as

H = 1
2mẋ

2 + 1
2mω

2x2 (6)
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2. Diatomic molecule

Now, consider a diatomic molecule having atoms with masses m1 and m2 inter-
acting through a harmonic potential described with a force constant k. Assuming
that the motion of the two nuclei is confined to one dimension, the Hamiltonian
of the problem becomes

H = 1
2
∑

i

miẋi
2 + 1

2k(x1 − x2)2 (7)

where x1 and x2 are the displacement coordinates relative to the equilibrium ge-
ometry of the molecule (Fi. 1).

Figure 1. Displacement coordinates of a diatomic molecule.

We first introduce a mass-weighted coordinate:
qi = √mixi (8)

to remove any explicit mass dependence from Eq. (7):

H = 1
2
∑

i

q̇i
2 + 1

2k
(

q1√
m1
− q2

m2

)2

= · · ·+ 1
2

(
k

m1
q2

1 − 2 k
√
m1m2

q1q2 + k

m2
q2

2

)2

= 1
2
∑

i

q̇i
2 + 1

2
∑
ij

qiKijqj (9)

where K is the dynamical or Hessian matrix given, in this case, by

K =


k

m1
− k
√
m1m2

− k
√
m1m2

k

m2

 (10)

We can find the eigenvalues and eigenvectors of the dynamical matrix K by solving
|K− λI| = 0 (11)

The solutions can be written as∑
j

Kijc
(n)
j = λnc

(n)
i (12)

c©Xinglong Zhang 2017 2



Molecular Vibrations ZHANG XINGLONG

where the superscript n refers to the nth normailsed eigenvector, and λn the cor-
responding eigenvalue.

Since the matrix K is Hermitian (indeed K is symmetric since all its components
are real), their eigenvectors are orthogonal, we can also normalised them to give
orthonormal eigenvectors: ∑

i

c
(n)
i c

(m)
i = δmn (13)

Now we wish to find normal mode coordinates, Qi, in terms of (a linear combination
of) scaled atomic displacements qi, such that these normal modes are decoupled
from each other and can be analysed separately. Expressed more formally, we wish
to be able to write the Hamiltonian in Eq. (9) in a diagonal form:

H =
∑

i

(1
2Q̇

2
i + 1

2ω
2
iQ

2
i

)
. (14)

Since the Hamiltonian Eq. (9) contains the atomic displacements qi, we consider
the following coordinate transform:

qi =
∑

n

c
(n)
i Qn (15)

i.e., writing the scaled coordinates as a linear combination of the normal mode
coordinates, where the coefficients c(n)

i is the ith component of the nth normalised
eigenvector from Eq. (12).

Substituting this into the Hamiltonian of the system Eq. (9), we have

H = 1
2
∑

i

q̇i
2 + 1

2
∑
ij

qiKijqj

= 1
2
∑

i

[∑
n

c
(n)
i Q̇n

] [∑
m

c
(m)
i Q̇m

]
+ 1

2
∑
ij

[∑
n

c
(n)
i Qn

]
Kij

[∑
m

c
(m)
i Qm

]

= 1
2
∑
mn

Q̇n

[∑
i

c
(n)
i c

(m)
i

]
Q̇m + 1

2
∑
mn

∑
ij

c
(n)
i Kijc

(m)
i

Qm

= 1
2
∑
mn

Q̇nδmnQ̇m + 1
2
∑
mn

λmδmnQm

= 1
2
∑

n

Q̇2
n + 1

2
∑

n

λnQ
2
n (16)

where in achieving the second last line, we used the equations from Eq. (12) and
(13). This now indeed has the diagonal form of Eq. (14) in which we identify the
eigenvalues from solving the dynamical matrix as

λn = ω2
n (17)
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At this stage, after solving for the eigenvalues and the eigenvectors of the dynam-
ical matrix, we are finally able to write the normal mode coordinates as a linear
combination of the (scaled) atomic displacements. We have the coordinate trans-
form Eq. (15), left multiply by transpose of another eigenvector and using the
orthonormality condition of Eq. (13), we have∑

i

c
(m)
i qi =

∑
i

c
(m)
i

∑
n

c
(n)
i Qn =

∑
n

[∑
i

c
(m)
i c

(n)
i

]
Qn =

∑
n

δmnQn = Qm

⇔ Qn =
∑

i

c
(n)
i qi (free relabelling of m→ n) (18)

Now, the above equation write the normal mode coordinates as a linear com-
bination of the mass-scaled atomic displacements so that each normal mode is
decoupled from the other normal modes (Ref Eq. 16). To solve the system of
molecular motions for the diatomic system, one is then required to solve the diag-
onalisation of the dynamical matrix in Eq. (10). This is left to the readers as a
simple exercise.

3. Generalisation to polyatomics

Consider a molecule consisting of N atoms. Classically, the Hamiltonian for molec-
ular vibrations has the general form

H = −1
2

3N∑
i

miṘ
2
i + V (R) (19)

where Ri is the position vector for atom i, mi is the mass of the atom with
components Ri (i = 1, · · · , 3N). The positions of all nuclei can be written as

R ≡ {R1,R2, · · · ,RN} (20)

The quantum expression is given instead by

Ĥ = 1
2
∑

i

1
mi

p̂2 + V (R) = −1
2
∑

i

1
mi

∂2

∂R2
i

+ V (R) (21)

However, we will note that using the mass-weighted coordinate in Eq. (8), we can
get the dynamical matrix using the potential term V (R) alone.

Suppose the molecule is at equilibrium geometry, denoted by

R(0) ≡ {R(0)
1 ,R(0)

2 , · · · ,R(0)
N }, (22)

we can define any nuclear motions relative to the equilibrium geometry by

Ri = R(0)
i + xi (23)
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where xi is a collection of 3 coordinate displacements for nucleus i:
xi = (x1, x2, x3). (24)

The condition for equilibrium geometry for a molecule is given by(
∂V

∂xi

)
0

= 0 (25)

where the subscript 0 denotes that the partial derivatives are evaluated at equi-
librium geometry. For small-amplitude displacements around the equilibrium, we
can Taylor-expand the potential energy as

V (R) = V0 + 1
2
∑
ij

(
∂2V

∂xi∂xj

)
0
xixj + cubic terms xixjxk + · · · (26)

where V0 = V (R(0)). Note that the linear term vanishes due to equilibrium condi-
tion.

In the harmonic approximation, the Taylor expansion above is truncated after the
quadratic terms. Comparing the quadratic term above with the potential energy
term (the second term) in Eq. (9), and using the mass-weighted coordinates in
Eq. (8), we can see that1 the dynamical matrix is given by

Kij = 1
√
mimj

(
∂2V

∂xi∂xj

)
0

(27)

=
(
∂2V

∂qi∂qj

)
0

(28)

We now have a general method for solving for normal modes of a system with
a potential energy V . We can construct the dynamical matrix from it using Eq.
(28). We then solve for its eigenvalues and eigenvectors to give the (square) of the
vibrational frequencies (Eq. 17) and the normal mode coordinates (Eq. 18). This
is indeed the same approach we use in solving the Hückel secular equations. Of
course, symmetry could be used to simplify the solving of these matrices.

4. Parallels between Hückel theory and molecular vibrations
analysis

Although the two areas appear to be very different, in actual fact, the ways to
solve these problems are very similar. We note the following resemblance between
Hückel theory and molecular vibrations analysis:

1you could do a change of variable differentiation by using chain rule
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Hückel Theory Molecular Vibrations

atomic orbitals, φi mass-weighted coordinates, qi

molecular orbitals, ψi normal mode coordinates, Qn

Hückel matrix, Hij dynamical matrix, Kij

orbital energies, εn squared frequencies, ω2
n

symmetry orbitals, θΓ symmetry-adapted linear combi-
nation of displacements, QΓ

Table 1. Close resemblance between Hückel theory and molecular
vibrations.
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